Math, asked by yadavgourav147, 3 months ago

The mode for the table is Class: 0-6 6-12 12-18 18-24
24-30 Frequency: 8 10 15 5 6​

Answers

Answered by mathdude500
3

\large\underline{\bf{Solution-}}

\begin{gathered} \begin{array}{|c|c|} \bf{x_i} & \bf{f_i} \\ 0 - 6 & 8  \\6 - 12 & 10 \\12 - 18 & 15 \\18 - 24 & 5 \\24 - 30 & 6 \end{array}\end{gathered}

We know,

Formula of Mode,

\boxed{ \boxed{\sf{Mode = l + \bigg(\dfrac{f_1 - f_0}{2f_1 - f_0 - f_2} \bigg) \times h }}}

where,

\:  \:  \:  \:  \:  \: \sf \: \bull \:l \: is \: lower \: limit

\:  \:  \:  \:  \:  \: \sf \: \bull \:\sf{f_0} \: is  \: frequency \:  of  \: class  \: preceding  \: modal  \: class

\:  \:  \:  \:  \:  \: \sf \: \bull \:\sf{f_1} \:  is  \: frequency  \: of  \: modal  \: class</p><p>

\:  \:  \:  \:  \:  \: \sf \: \bull \:\sf{f_2} \: is  \: frequency  \: of  \: class  \: succeeding \:  modal \:  class

\:  \:  \:  \:  \:  \: \sf \: \bull \:h \: is \: height \: of \: modal \: class \:

Here,

  • Modal class is 12 - 18

Thus,

\rm :\longmapsto\:l \:  =  \: 12

\rm :\longmapsto\:f_0 = 10

\rm :\longmapsto\:f_1 = 15

\rm :\longmapsto\:f_2 = 5

\rm :\longmapsto\:h \:  =  \: 6

Now,

On substituting the values in formula of mode,

\rm :\longmapsto\:{{\bf{Mode = l + \bigg(\dfrac{f_1 - f_0}{2f_1 - f_0 - f_2} \bigg) \times h }}}

\rm :\longmapsto\:{{\bf{Mode = 12 + \bigg(\dfrac{15 - 10}{2 \times 15 - 10 - 5} \bigg) \times 6 }}}

\rm :\longmapsto\:{{\bf{Mode = 12 + \bigg(\dfrac{5}{30 - 15} \bigg) \times 6 }}}

\rm :\longmapsto\:{{\bf{Mode = 12 + \bigg(\dfrac{5}{15} \bigg) \times 6 }}}

\rm :\longmapsto\:{{\bf{Mode = 12 + 2 }}}

\rm :\longmapsto\:{{\bf{Mode = 14}}}

Additional Information :-

\dashrightarrow\sf Median= l + \Bigg \{h \times \dfrac{ \bigg( \dfrac{N}{2} - cf \bigg)}{f} \Bigg \}

\dashrightarrow\sf Mean = \dfrac{ \sum f_i x_i}{ \sum f_i}

\dashrightarrow\sf Mean =A +  \dfrac{ \sum f_i d_i}{ \sum f_i}

\dashrightarrow\sf Mean =A +  \dfrac{ \sum f_i u_i}{ \sum f_i} \times h

Similar questions