Math, asked by sreevasist8300, 1 year ago

The mode of the following data is 36.find the missing frequency x in it.Class  0-10  10-20  20-30  30-40  40-50  50-60  60-70Frequency  8  10  x  16  12  6  7

Answers

Answered by anuritha
191
therefore the answer is 10 ,.hope this answer helps you
Attachments:

Mohityadav111: there will not be 120x
Answered by tardymanchester
122

Answer:

The value of x=10.

Step-by-step explanation:

Given : Data,  

Class :      0-10  10-20  20-30  30-40  40-50  50-60  60-70

Frequency : 8       10       x            16       12         6            7

To find : The value of x?  

Solution :  

Formula to find the mode is  

M=l+(\frac{f_1-f_0}{2f_1-f_0-f_2})\times h  

Where, l is the lower limit of the modal class  

h is the size of the class interval,  

f_1 is the frequency of the modal class  

f_0 is the frequency of the class preceding the modal class,  

f_2 is the frequency of the class succeeding the modal class.  

From the given data,  

In the class interval 30-40 has highest frequency.  

So, The modal class is 30-40  

l=30 , h=10 , f_1=16 ,f_0=x, f_2=12 , M=36

Substituting the value in the mode formula,  

36=30+(\frac{16-x}{2(16)-x-12})\times 10  

36-30=(\frac{16-x}{32-x-12})\times 10  

6=\frac{160-10x}{20-x}  

120x-6x=160-10x  

4x=40  

x=10  

Therefore, The value of x=10.

Similar questions