Math, asked by yongjao122, 5 months ago

The mode of the following data is 67. Find the missing frequency x.

Class 40-50 50-60 60-70 70-80 80-90

Frequency 5 x 15 12 7​

Answers

Answered by shikharkhetan
29

Given:- Mode = 67

To Find:- Find missing frequency x

Step-by-step explanation:

Class           40-50   50-60   60-70   70-80   80-90

Frequency     5           x            15         12           7

Click on the image for solution.

Attachments:
Answered by SarcasticL0ve
127

☯ The mode of following data is 67.

⠀⠀⠀⠀

\begin{tabular}{|c|c|c|c|c|c|c|}\cline{1-6} \sf Class & 40-50 & 50-60 & 60-70 & 70-80 &80-90\\\cline{1-6} \sf Frequency&5&x&15&12&7\\\cline{1-6}\end{tabular}

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━

\boxed{\begin{array}{c|cc}\sf Class\: interval&\sf Frequency\: (f)\\\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad}{}\\\sf 40 - 50&\sf 5\\\\\sf 50 - 60 &\sf x\\\\\sf 60-70 &\sf 15\\\\\sf 70 - 80&\sf 12\\\\\sf 80-90&\sf 7\\\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad}{}\\\sf & \sf \sum f = 67& \end{array}}

\dag\;{\underline{\frak{As\;we\;know\;that,}}}\\ \\

\sf {\underline{\sf{\bigstar\;Mode\;of\;the\;data\;is\;givEn\;by,}}}\\ \\

\maltese\;{\underline{\boxed{\pink{\sf{Mode = L + \dfrac{f_1 - f_0}{2f_1 - f_0 - f_2} \times h}}}}}\\ \\

Given that,

  • Mode of data is 67 which lies between 60 - 70.

⠀⠀⠀⠀

Therefore,

  • Lower limit, L = 60
  • Class interval, h = 50 - 40 = 10
  • Frequency of modal class, \sf f_1 = 15
  • Frequency of class before modal class, \sf f_0 = x
  • Frequency of class after modal class, \sf f_2 = 12

⠀⠀⠀⠀

\dag\;{\underline{\frak{Now,\; Putting\; values\;in\;formula,}}}\\ \\

:\implies\sf 60 + \dfrac{15 - x}{(2 \times 15) - x - 12} \times 10= 67\\ \\

:\implies\sf 60 + \dfrac{15 - x}{30 - x - 12} \times 10 = 67\\ \\

:\implies\sf 60 + \dfrac{15 - x}{18 - x} \times 10 = 67\\ \\

:\implies\sf  \dfrac{15 - x}{18 - x} \times 10 = 67 - 60\\ \\

:\implies\sf  \dfrac{15 - x}{18 - x}  \times 10 = 7 \\ \\

:\implies\sf 10(15 - x) = 7(18 - x)\\ \\

:\implies\sf 150 - 10x = 126 - 7x\\ \\

:\implies\sf - 10x + 7x = 126 - 150\\ \\

:\implies\sf - 3x = - 24\\ \\

:\implies\sf x = \cancel{ \dfrac{24}{3}}\\ \\

:\implies{\underline{\boxed{\frak{\purple{x = 8}}}}}\;\bigstar\\ \\

\therefore\;{\underline{\sf{The\;missing\; frequency\;is\; {\textsf{\textbf{8}}}.}}}


Rythm14: Amazing ✨
BrainlyIAS: Great :-) ❤
Similar questions