Math, asked by khushipatel2528, 3 months ago

the mode of the following data is 67 .find the missing frequency
class. frequency

40-50. 5
50-60. x
60-70. 15
70-80. 12
80-90. 7​

Answers

Answered by IamJaat
141

GIVEN :-

  • Mode = 67

TO FIND :-

  • Missing frequency 'x '

SOLUTION :-

  • Mode = 67

  • Modal class = 60 - 70

 \large \boxed {\underbrace {\underline {\sf {\red { Mode \;= l + \left\{ \dfrac {f_1 - f_0}{2f_1 - f_0 - f_2 } \right\} \times h}}}}}

where,

  • l = lower limit of modal class, l = 60

  • h = class height, h = 50 - 40 = 10

  • f_1 = frequency of modal class, f_1 = 15

  • f_0 = frequency of preceding modal class, f_0 = x

  • f_2 = frequency of succeeding modal class, f_2 = 12

Now,

 \small {\underline {\underline {\frak {\green { Substituting \; values \; in \; Formula :}}}}}

 : \implies \sf { 67 = 60 + \left\{ \dfrac { 15 - x}{2(15) - x - 12} \right\}  \times 10 }

 : \implies \sf { 67 -60 = \left\{ \dfrac {15 - x}{18 - x} \right\} \times 10}

 : \implies \sf { 7 (18 - x) = (15 - x) 10 }

 : \implies \sf { 126 - 7x = 150 - 10x}

 : \implies \sf { 10 - 7x = 150 - 126 }

 : \implies \sf { 3x = 24 }

 : \implies \sf { x=8}

 \sf {\underline {\underline { Therefore, \; missing \; frequency \; = 8 \; \checkmark }}}

Attachments:
Similar questions