Math, asked by srilakshminarayani1, 4 hours ago

the mode of the following frequency table is 26 . find th missing frequencies if the total frequncy is 50 ( 10th grade ) ​

Attachments:

Answers

Answered by MysticSohamS
11

Answer:

hey here is your answer in above pics

pls mark it as brainliest

Attachments:
Answered by anjali1307sl
2

Answer:

The value of the missing frequency, F₁ = 9.

And the value of missing frequency, F₂ = 11.

Step-by-step explanation:

Given data,

Class               Frequency ( f_{i} )

0-10                   3

10-20                 F_{1}

20-30                 15

30-40                 F_{2}

40-50                 8

50-60                 4

The total frequencies, \sum f_{i} = 50

The mode of the given frequencies = 26

The value of the missing frequencies ( F₁ and F₂ ) =?

As we know,

  • Mode = L + h [\frac{(f_{m} -f_{1} )}{2f_{m} -f_{1}-f_{2}  } ]

Here,

  • L = The lower limit ( modal class )
  • h = Size of the class interval
  • f_{m} = Frequency ( modal class )
  • f_{1} = Frequency ( class prior to modal class )
  • f_{2} = Frequency ( class next to modal class )

As given, the mode is 26; therefore, the modal class is 20-30

Firstly, we have to make a table to find out the terms of the mode formula:

Class               Frequency ( f_{i} )

0-10                   3

10-20                 F_{1}      -------f_{1}

20-30                 15      -------f_{m}

30-40                 F_{2}      -------f_{2}

40-50                 8

50-60                 4

Thus,

  • L = 20
  • h = 10
  • f_{m} = 15
  • f_{1} = F_{1}
  • f_{2} = F_{2}

Now,

  • Mode = L + h [\frac{(f_{m} -f_{1} )}{2f_{m} -f_{1}-f_{2}  } ]
  • 26 = 20 + 10 [\frac{15 -F_{1} )}{2(15) -F_{1}-F_{2}  } ]
  • [\frac{(150 -10F_{1} )}{30 -F_{1}-F_{2}  } ] =6
  • 150 - 10F_{1} = 180 -6F_{1}- 6F_ {2}
  • 75 - 5F_{1} = 90 -3F_{1}- 3F_ {2}
  • 2F_{1} -3F_{2} = -15   -------equation (a)

As given,

  • \sum f_{i} = 50
  • 3+F_{1} + 15 + F_{2} +8 +4 = 50
  • F_{1} + F_{2} = 20         --------equation (b)

After multiplying equation (b) by 3, we get:

  • 3F_{1} + 3F_{2} = 60  -------equation (c)

After adding equation (a) and equation (c), we get:

  • 2F_{1} + 3F_{1} = 45
  • F_{1} = 9

After putting the value of F_{1} in equation (b), we get:

  • 9 + F_{2} = 20
  • F_{2} = 11

Hence, the value of the missing frequency, F₁ = 9.

And the value of missing frequency, F₂ = 11.

Similar questions