Math, asked by chitrakshguptajpr, 1 day ago

the modulus of the complex number a+ib/a-ib is​

Answers

Answered by senboni123456
9

Step-by-step explanation:

We have,

z =  \dfrac{a + ib}{a - ib}

 \implies \: z =  \dfrac{ \left(a + ib \right)\left(a + ib \right)}{ \left(a - ib \right)\left(a + ib \right)}

 \implies \: z =  \dfrac{ \left(a + ib \right)^{2} }{  {a}^{2} +  {b}^{2}  }

 \implies \: z =  \dfrac{ \left(a \right) ^{2}  + \left( ib \right)^{2}  + 2 \cdot \: a \cdot \: ib}{  {a}^{2} +  {b}^{2}  }  \\

 \implies \: z =  \dfrac{ {a}^{2}   - {b }^{2}  + 2ab \: i}{  {a}^{2} +  {b}^{2}  }  \\

 \implies \: z =  \dfrac{ {a}^{2}   - {b }^{2} }{  {a}^{2} +  {b}^{2}  }  +  \dfrac{ 2ab  }{  {a}^{2} +  {b}^{2}  }i\\

 \implies \:  | z |  = \left|   \dfrac{ {a}^{2}   - {b }^{2} }{  {a}^{2} +  {b}^{2}  }  +  \dfrac{ 2ab  }{  {a}^{2} +  {b}^{2}  } i\right| \\

 \implies \:  | z |  = \left(\dfrac{ {a}^{2}   - {b }^{2} }{  {a}^{2} +  {b}^{2}  }  \right)^{2}  + \left(  \dfrac{ 2ab  }{  {a}^{2} +  {b}^{2}  } \right)^{2} \\

 \implies \:  | z |  = \dfrac{  \left({a}^{2}   - {b }^{2} \right)^{2}  }{  \left( {a}^{2} +  {b}^{2} \right)^{2}   }    + \dfrac{ 4 {a}^{2}  {b}^{2}  }{   \left({a}^{2} +  {b}^{2}  \right)^{2} }\\

 \implies \:  | z |  = \dfrac{  \left({a}^{2}   - {b }^{2} \right)^{2} + 4 {a}^{2}  {b}^{2}   }{  \left( {a}^{2} +  {b}^{2} \right)^{2}   }    \\

 \implies \:  | z |  = \dfrac{  {a}^{4}    + {b }^{4}  - 2 {a}^{2} {b}^{2}  + 4 {a}^{2}  {b}^{2}   }{  \left( {a}^{2} +  {b}^{2} \right)^{2}   }    \\

 \implies \:  | z |  = \dfrac{  {a}^{4}    + {b }^{4}   + 2 {a}^{2} {b}^{2}  }{  \left( {a}^{2} +  {b}^{2} \right)^{2}   }    \\

 \implies \:  | z |  = \dfrac{  \left( {a}^{2} +  {b}^{2} \right)^{2}  }{  \left( {a}^{2} +  {b}^{2} \right)^{2}   }    \\

 \implies \:  | z |  =1    \\

Similar questions