Chemistry, asked by aneeshmoos1, 11 months ago

The molal depression constant for water=1.85 deg/molal
and for benzene is 5.12 deg/molal. If the ratio of the
latent heats of fusion of benzene to water is 3:8, calculate
the freezing point of benzene.

Answers

Answered by UmangThakar
7

Answer: Freezing point of Benzene = 5.12° C

Explanation:

Freezing point of water = 0° C = 273 K

Molal depression constant can be expressed by the formula,

K_b = \frac{RT_b^2}{1000L_v}

Where, R = gas constant (in calorie), T_b= boiling point of solvent in Kelvin

L_v = Latent heat of vaporisation (calorie /gram)

From the above formula, we can write

K_bL_v α T^2  (Directly Proportional)

\frac{K_(water)L(water)}{ K_(benzene)L_(benzene)}  = \frac{T_ (water)^{2}}{T_ (benzene) ^2}

\frac{1.85 X 8}{5.12 X 3} = \frac{273}{T_ (benzene) ^2}

T_ (benzene) ^2  =  \frac{273^2 X 5.12 X 3}{1.85 X 8}

T_{benzene} = 273 \sqrt{\frac{5.12 X 3}{1.85 X 8} }

T_{benzene} = 278.12 K

T_{benzene}  = 5.12° C

Hence, Freezing point of benzene is 5.12° C.

Answered by Fatimakincsem
4

Thus the temperature of the benzene is 5.117 °C

Explanation:

Given data:

  • Modal depression constant for water = 1.85 deg / molal
  • Modal depression constant for benzene = 5.12 deg / molal
  • Ratio of the  latent heats of fusion of benzene to water = 3 : 8

Solution:

Kf = RT^2 / 100 Lf

kf Lf ∝ T^2

K(water) L (water) / K (benzene) L (benzene) = [T (water)]^2 / [T (benzene)]^2

1.85 / 5.12 = (273)^2 /  [T (benzene)]^2

[T (benzene)] = 273 √ 5.12 x 3 / 1.85 x 8

[T (benzene)]  = 5.117 °C

Thus the temperature of the benzene is 5.117 °C

Similar questions