The momentum of a body of mass 15 kg is 50 kg m/s. Find its kinetic energy.
Answers
Explanation:
Solution:-
\longmapsto \sf \: KE = \dfrac{(50 \: kgm {s}^{ - 1} )^2}{2(15 \: kg)}⟼KE=
2(15kg)
(50kgms
−1
)
2
⠀
\longmapsto \sf \:KE = \dfrac{50 \: kgm {s}^{ - 1} \times 50 \: kgm {s}^{ - 1} }{30 \: kg}⟼KE=
30kg
50kgms
−1
×50kgms
−1
⠀
\longmapsto \sf \: KE = \dfrac{50 \times 50 \: {kg}^{2} {m}^{2} {s}^{ - 2} }{30 \: kg}⟼KE=
30kg
50×50kg
2
m
2
s
−2
⠀
\longmapsto \sf \:KE = \dfrac{2500 \: {kg}^{2} {m}^{2} {s}^{ - 2} }{30 \: kg}⟼KE=
30kg
2500kg
2
m
2
s
−2
⠀
\longmapsto \sf \:KE = \dfrac{2500 \: kg {m}^{2} {s}^{ - 2} }{30}⟼KE=
30
2500kgm
2
s
−2
⠀
\longmapsto \sf \:KE = 83.33 \: kg {m}^{2} {s}^{ - 2}⟼KE=83.33kgm
2
s
−2
⠀
\longmapsto{\underline{\boxed{\purple{\sf{KE = 83.33 \: J}}}}}⟼
KE=83.33J
⠀
Hence,
the kinetic energy is 83.33 Joule.
Answer:
kinetic energy :-
∴ v = p/m ==>>30Kg m/s