Physics, asked by jazi7206, 6 hours ago

The momentum [P], area[A] and time [T] are taken as fundamental quantity then the dimensional formula of work will be.

Answers

Answered by Anonymous
16

Given : The momentum [P], area[A] and time [T] are taken as fundamental quantity.

\\:\implies \: \rm [W] = k. [p]^{a} [A]^{b} [T]^{c} ---(i) \\

k is a dimensionaless constant.

  • Dimensions of work = \rm [M^{1} L^{2} T^{-2} ]

  • Dimensions of momentum = \rm [M^{1} L^{1} T^{-1} ]

  • Dimensions of Area = \rm [M^{0} L^{2} T^{0} ]

  • Dimensions of Time = \rm [M^{0} L^{0} T^{1} ]

\\\longrightarrow\rm [M^{1} L^{2} T^{-2} ]=  [M^{1} L^{1} T^{-1} ]^{a}  [M^{0} L^{2} T^{0} ]^{b}  [M^{0} L^{0} T^{1} ]^{c}\\

\\\longrightarrow\rm [M^{1} L^{2} T^{-2} ]=  [M^{a} L^{a} T^{-a} ]  [M^{0} L^{2b} T^{0} ] [M^{0} L^{0} T^{c} ]\\

\\\longrightarrow\rm [M^{1} L^{2}L^{-2}] = [M^{(a)}  L^{(a+2b)}  T^{(-a+c)} ]\\

Now,

\\\mapsto \: a = 1 ---(ii)\\

\\\mapsto 2 = a+2b \\

\\\mapsto 2 = 1+2b\\

\\\mapsto b = \dfrac{1}{2} ---(iii)

\\\mapsto -a+c=-2

\\\mapsto -1+c=-2\\

\\\mapsto c=-1---(iv)\\

substituting the values of eq (ii), (iii) and (iv) in eq (i)

\\\dashrightarrow\bf [W] = k. p^{1} A^{\frac{1}{2}} t^{-1} }

___________________________________

Answered by Anonymous
26

Answer:

The momentum [P], area[A] and time [T] are taken as fundamental quantity:

\footnotesize\longrightarrow [W] \propto [P]^{\alpha} \: ...(i) \\

\footnotesize\longrightarrow [W] \propto [A]^{\beta} \: ...(ii)

\footnotesize\longrightarrow [W] \propto [T]^{\gamma} \: ...(iii)

From equation (I), (II) and (III):

\footnotesize\longrightarrow [W] \propto [P]^{\alpha}[A]^{\beta} [T]^{\gamma}

\footnotesize\longrightarrow [W]  = k [P]^{\alpha}[A]^{\beta} [T]^{\gamma}

Here, K is the proportionality constant.

Dimension of Work:

\footnotesize\longrightarrow [W] = [M^1L^2T^{-2}]

Dimension of Momentum

\footnotesize\longrightarrow [P] = [M^1L^1T^{-1}]

Dimension of Area:

\footnotesize\longrightarrow [A] = [M^0L^2T^{0}]

Dimension of Time:

\footnotesize\longrightarrow [T] = [M^0L^0T^{1}]

Now,

\footnotesize\longrightarrow  [M^1L^2T^{-2}] =  [M^1L^1T^{-1}]^{\alpha}[M^0L^2T^{0}]^{\beta} [M^0L^0T^{1}]^{\gamma}

\footnotesize\longrightarrow  [M^1L^2T^{-2}] =  [M]^{\alpha}[L]^{ (\alpha + 2\beta)} [T]^{( -  \alpha + \gamma)}

On comparing the powers of both LHS and RHS:

\footnotesize\longrightarrow   \red{\rm  \alpha = 1}

\footnotesize\longrightarrow    \alpha  + 2 \beta  = 2

\footnotesize\longrightarrow   1  + 2 \beta  = 2

\footnotesize\longrightarrow  2 \beta  = 2 - 1

\footnotesize\longrightarrow  2 \beta  =  1

\footnotesize\longrightarrow    \red{ \rm\beta  =   \dfrac{1}{2} }

\footnotesize\longrightarrow   -  \alpha  +  \gamma   =   - 2

\footnotesize\longrightarrow   - 1  +  \gamma   =   - 2

\footnotesize\longrightarrow    \gamma   =   - 2 + 1

\footnotesize\longrightarrow   \red{ \rm  \gamma   =   -1}

Therefore,

\footnotesize\longrightarrow \underline{\boxed{\orange{ \bf [W]  =  [P]^{1}[A]^{\frac{1}{2}} [T]^{-1}}}}

Similar questions