Math, asked by aniduttapukur, 11 months ago

The monthly earning and expenditures of A and B are in the ratio 5 : 7 and 2 : 1 respectively .Find A's earning per month if the monthly savings of B is twice that of A. also given that A saved rupees 578 every month. ​

Answers

Answered by Anonymous
9

\sf\red{\underline{\underline{Answer:}}}

\sf{Income \ of \ A \ is \ Rs \ 1348.9}

\sf\orange{Given:}

\sf{\implies{The \ monthly \ earning \ of \ A \ and \ B}}

\sf{are \ in \ ratio \ of \ 5:7 \ and \ expenditures}

\sf{is \ in \ ratio \ of \ 2:1.}

\sf{\implies{Saving \ of \ A=Rs \ 578}}

\sf{\implies{Saving \ of \ B=2\times \ Saving \ of \ A}}

\sf{i.e \ Saving \ of \ B=2(578)=Rs \ 1156}

\sf\pink{To \ find:}

\sf{Earning \ of \ A}

\sf\green{\underline{\underline{Solution:}}}

\sf{Let \ income \ of \ A \ and \ B \ be \ in \ ratio}

\sf{5x:7x}

\sf{Let \ expenditure \ of \ A \ and \ B \ in \ ratio}

\sf{2y:1y}

\boxed{\sf{Income \ - \ Expenditure=Saving}}

\sf{\therefore{For \ A,}}

\sf{5x-2y=578...(1)}

\sf{\therefore{For \ B,}}

\sf{7x-y=1156...(2)}

\sf{Multiply \ equation \ (2) \ by \ 2 \ we \ get,}

\sf{14x-2y=2312...(3)}

\sf{Subtract \ equation (1) \ from \ equation (3)}

\sf{14x-2y=2312}

\sf{-}

\sf{5x-2y=578}

______________________

\sf{9x=1734}

\sf{x=\frac{1734}{9}}

\sf{x=192.7 \ (approx)}

\sf{\therefore{Income \ of \ A=7(192.7)}}

\sf{\implies{Rs \ 1348.9}}

\sf\purple{\tt{\therefore{Income \ of \ A \ is \ Rs \ 1348.9}}}

Answered by TheSentinel
39

\color{darkblue}\underline{\underline{\sf Question:}}

\rm{The \ monthly \ earning \ and \ expenditures \ A}

\rm{and \ B \ are \  in \ the \ ratio \ 5 \ : \ 7  \ and \ 2 \ : \ 1  }

\rm{  respectively . \ Find \ A's \ earning \ per \ month }

\rm{if \ the \ monthly \ savings \ of \ B \ is \ twice \ that }

\rm{of \ A. \ Also \ given \ that \ A \ saved \ rupees }

\rm{578 \ every \ month}

_________________________________________

\color{green}\underline{\underline{\sf Answer:}}

\rm\purple{Income \ of \ A \ is \ Rs \ 1348.9}

_________________________________________

\sf\large\underline\red{Given:}

\rm{The \ monthly \ earning \ of \ A \ and \ B}

\rm{are \ in \ ratio \ of \ 5:7 \ and \ expenditures}

\rm{is \ in \ ratio \ of \ 2:1.}

\rm{Saving \ of \ A=Rs \ 578}

\rm{Saving \ of \ B=2\times \ Saving \ of \ A}

\rm{i.e \ Saving \ of \ B=2(578)=Rs \ 1156}

_________________________________________

\sf\large\underline\orange{To \ Find:}

\rm{Earning \ of \ A}

_________________________________________

\color{pink}\underline{\underline{\sf Answer:}}

\rm{Let \ income \ of \ A \ and \ B \ be \ in \ ratio}

\rm{5x:7x}

\rm{Let \ expenditure \ of \ A \ and \ B \ in \ ratio}

\rm{2y:1y}

\star{\bf{Income \ - \ Expenditure=Saving}}

\rm{\implies{For \ A,}}

\rm{5x-2y=578....................[a]}

\rm{\implies{For \ B,}}

\rm{7x-y=1156......................[b]}

\rm{Multiply \ equation \ [b] \ by \ 2 \ we \ get,}

\rm{14x-2y=2312................[c]}

\rm{Subtract \ equation \ [b] \ from \ equation [c]} \\

\rm{9x=1734}

\rm{x=\frac{1734}{9}} \\

\rm{x=192.7 \ (approximate \ value)}

\sf{\implies{Income \ of \ A=7(192.7)}}

\rm{Rs \ 1348.9}

\sf\orange{\bf{\implies{Income \ of \ A \ is \ Rs \ 1348.9}}}

Similar questions