Math, asked by sunidhiverma620, 1 year ago

The monthly income of A and B are in the ratio of 7:3 and their monthly expenditures are in the ratio of 13:9. If each saves ₹1500 per month,find the monthly income of each

Answers

Answered by Vegota
1

These are two incomes of A and B

i.e. RS 3937.5 and RS 1687.5

Bro please give it the brainiest one

Attachments:

sunidhiverma620: Umm.. Nice try.
sunidhiverma620: But the answers are ₹8000 and ₹6000
sunidhiverma620: But I really pay gratitude for your help
Answered by silentlover45
13

\underline\mathfrak{Given:-}

  • \: \: \: \: \: \: \: Ratio \: \: of \: \: monthly \: \: income \: \: \leadsto  \: {7} \: : \: {3}
  • \: \: \: \: \: \: \: Ratio \: \: of \: \: saving \: \: per \: \: month \: \: \leadsto  \: {13} \: : \: {9}

\underline\mathfrak{To \: \: Find:-}

  • \: \: \: \: \: monthly \: \: incomes \: \: of \: \: both \: \: A \: \: and \: \: B ?

\underline\mathfrak{Solutions:-}

  • \: \: \: \: \: \: \: Let \: \: the \: \: monthly \: \: income \: \: of \: \: A \: \: = \: \: {7x}.
  • \: \: \: \: \: \: \: Let \: \: the \: \: monthly \: \: income \: \: of \: \: B \: \: = \: \: {3x}.

\: \: \: \: \: \: \: \therefore \: Let \: \: the \: \: Ratio \: \: of \: \: saving \: \: per \: \: monthly \: \: be \: \: {13y} \: \: and \: \: {9y}.

  • \: \: \: \: \: \: \: monthly \: \: saving \: \: of \: \: A \: \: = \: \: {{7x} \: - \: {13y}}.
  • \: \: \: \: \: \: \: monthly \: \: saving \: \: of \: \: B \: \: = \: \: {{3x} \: - \: {9y}}.

\: \: \: \: \: \: \: \therefore But, \: \: Each \: \: saves \: \: Rs \: \: 1500 \: \: per \ \: months.

\: \: \: \: \: \: \: {7x} \: - \: {13y} \: \: = \: \: {1500} \: \: \: \: \: \: ....{(1)}.

\: \: \: \: \: \: \: {3x} \: - \: {2y} \: \: = \: \: {1500} \: \: \: \: \: \: ....{(2)}.

  • \: \: \: \: \: \: \: Multiplying \: \: Eq. \: \: {(1)}. \: \: by \: \: {2} \: \: and \: \: Eq. \: \: {(2)} \: \: by \: \: {13}, \: \: we \: \: get.

\: \: \: \: \: \: \: {14x} \: - \: {26y} \: \: = \: \: {3000} \: \: \: \: \: \: ....{(3)}.

\: \: \: \: \: \: \: {39x} \: - \: {26y} \: \: = \: \: {19500} \: \: \: \: \: \: ....{(4)}.

  • \: \: \: \: \: \: \: Subtracting \: \: Eq. \: \: {(3)} \: \: from \: \: Eq. \: \: {(4)}, \: \: we \: \: get.

\: \: \: \: \: \: \: {14x} \: - \: {26y} \: \: = \: \: {3000} \\ \: \: \: \: \: \: \: {39x} \: - \: {26y} \: \: = \: \: {19500} \\ \: \: \: \: \: \: \: \underline{ \: \: \: - \: \: \: \: \: \: \: \: \: \: + \: \: \: \: \: \: = \: \: \: \: \: - \: \: \: \: } \\ \: \: \: \: \: \: \: \: \: \: {-25x} \: \: \: \: \: = \: \: \: \: {-16500}

\: \: \: \: \: \: \: \leadsto  \: \: \frac{-16500}{-25}

\: \: \: \: \: \: \: \leadsto  \: \: {660}

  • \: \: \: \: \: \: \: monthly \: \: income \: \: of \: \: A \: \: = \: \: {7x}

\: \: \: \: \: \: \: \leadsto  \: \: {7} \: \times \: {660}

\: \: \: \: \: \: \: \leadsto  \: \: {4620}

  • \: \: \: \: \: \: \: monthly \: \: income \: \: of \: \: B \: \: = \: \: {3x}

\: \: \: \: \: \: \: \leadsto  \: \: {3} \: \times \: {660}

\: \: \: \: \: \: \: \leadsto  \: \: {990}

  • \: \: \: \: \: \: \: Hence, \: \: the \: \: income \: \: of \: \: A \: \: and \: \: B \: \: are \: \: {4620} \: \: and \: \: {990}.

__________________________________

Similar questions