Math, asked by 70095114, 19 days ago

The monthly incomes of ten families in rupees in a certain locality are given below.:family A 85,B 70,C 10,D 75,E500,F 8,G 42,H250,I 40,J 36 calculate the arthmatic mean, geometric mean, harmonic mean, of the above income. Which one of the above three averages represents the above figures best.​

Answers

Answered by ppreetimalik
0

Answer:

QUESTION:If α, β and γ are the roots of equation x³ - px + q = 0, then the cubic equation whose roots are [α/(1+α)], [β/(1+β)] and [γ/(1+γ)] will be?SOLUTION:Given:α, β and γ are the roots of equation x³ - px + q = 0To Find:Cubic equation whose roots are [α/(1+α)], [β/(1+β)] and [γ/(1+γ)].Answer:Option A : (p + q - 1)x³ - (2p + 3q)x² + (p + 3q)x - q = 0 is correct.Step By Step Explanation:

We know that for a cubic equation, ax³ + bx² + cx + d = 0,

Sum of zeroes = -b/aSum of product of zeroes taken two at a time = c/aProduct of zeroes = -d/a

So,

Sum of zeroes = α + β + γ = -b/a = -(0)/1 = 0 ————(1)Sum of product of zeroes taken two at a time = αβ + βγ + γα = c/a = (-p)/1 = -p ————(2)Product of zeroes = αβγ = -d/a = -(q)/1 = -q ————(3)

\begin{gathered}\\\end{gathered}

Now, we need to find the cubic equation whose roots are [α/(1+α)], [β/(1+β)] and [γ/(1+γ)].

For this, we will first find the sum of zeroes, sum of product of zeroes taken two at a time and product of zeroes for the required cubic equation.

\begin{gathered}\\\end{gathered}

First, we will find sum of zeroes.

So,

\implies\text{Sum of zeroes =} \dfrac{\alpha}{1+\alpha}+\dfrac{\beta}{1+\beta}+\dfrac{\gamma}{1+\gamma}⟹Sum of zeroes =1+αα+1+ββ+1+γγ

\implies\text{Sum of zeroes =}\dfrac{\alpha(1+\beta)(1+\gamma)+ \beta(1+\alpha)(1+\gamma)+ \gamma(1+\beta)(1+\alpha)}{(1+\alpha)(1+\beta)(1+\gamma)}⟹Sum of zeroes =(1+α)(1+β)(1+γ)α(1+β)(1+γ)+β(1+α)(1+γ)+γ(1+β)(1+α)

\implies\text{Sum of zeroes =}\dfrac{(\alpha+\alpha\gamma+\beta\alpha+\alpha\beta\gamma)+(\beta+\beta\gamma+\beta\alpha+\alpha\beta\gamma)+(\gamma+\alpha\gamma+\beta\gamma+\alpha\beta\gamma)}{1+\alpha+\beta+\alpha\beta+\gamma+\alpha\gamma+\beta\gamma+\alpha\beta\gamma}⟹Sum of zeroes =1+α+β+αβ+γ+αγ+βγ+αβγ(α+αγ+βα+αβγ)+(β+βγ+βα+αβγ)+(γ+αγ+βγ+αβγ)

Grouping the terms,

\implies\text{Sum of zeroes =}\dfrac{(\alpha+\beta+\gamma)+2(\alpha\beta+\beta\gamma+\gamma\alpha)+3(\alpha\beta\gamma)}{1+(\alpha+\beta+\gamma)+(\alpha\beta+\alpha\gamma+\beta\gamma)+(\alpha\beta\gamma)}⟹Sum of zeroes =1+(α+β+γ)+(αβ+αγ+βγ)+(αβγ)(α+β+γ)+2(αβ+βγ+γα)+3(αβγ)

Using (1), (2) and (3),

\implies\text{Sum of zeroes =}\dfrac{(0)+2(-p)+3(-q)}{1+(0)+(-p)+(-q)}⟹Sum of zeroes =1+(0)+(−p)+(−q)(0)+2(−p)+3(−q)

\implies\text{Sum of zeroes =}\dfrac{-2p-3q}{1-p-q}=\dfrac{2p+3q}{p+q-1}⟹Sum of zeroes =1−p−q−2p−3q=p+q−12p+3q

Hence,

\implies\text{Sum of zeroes =}\dfrac{2p+3q}{p+q-1}- - - -(4)⟹Sum of zeroes =p+q−12p+3q−−−−(4)

\begin{gathered}\\\end{gathered}

Now, we will find sum of product of zeroes taken two at a time.

So,

\implies\text{Sum of product of zeroes taken two at a time =} \left(\dfrac{\alpha}{1+\alpha}\times\dfrac{\beta}{1+\beta}\right)+ \left(\dfrac{\alpha}{1+\alpha}\times\dfrac{\gamma}{1+\gamma}\right)+ \left(\dfrac{\gamma}{1+\gamma}\times\dfrac{\beta}{1+\beta}\right)⟹Sum of product of zeroes taken two at a time =(1+αα×1+ββ)+(1+αα×1+γγ)+(1+γγ×1+ββ)

\implies\text{Sum of product of zeroes taken two at a time =}\dfrac{\alpha\beta}{(1+\alpha)(1+\beta)}+ \dfrac{\alpha\gamma}{(1+\alpha)(1+\gamma)} + \dfrac{\gamma\beta}{(1+\gamma)(1+\beta)}⟹Sum of product of zeroes taken two at a time =(1+α)(1+β)αβ+(1+α)(1+γ)αγ+(1+γ)(1+β)γβ

\implies\text{Sum of product of zeroes taken two at a time =}\dfrac{\alpha\beta(1+\gamma)+\alpha\gamma(1+\beta)+ \gamma\beta(1+\alpha)}{(1+\alpha)(1+\beta)(1+\gamma)}⟹Sum of product of zeroes taken two at a time =(1+α)(1+β)(1+γ)αβ(1+γ)+αγ(1+β)+γβ(1+α)

\implies\text{Sum of product of zeroes taken two at a time =}\dfrac{\alpha\beta+\alpha\beta\gamma+ \alpha\gamma+\alpha\beta\gamma+ \gamma\beta+\alpha\beta\gamma}{1-p-q}⟹Sum of product of zeroes taken two at a time =1−p−qαβ+αβγ+αγ+αβγ+γβ+αβγ

We had calculated the value of (1+α)(1+β)(1+γ) to be (1-p-q), that’s why we put its value directly.

Grouping the terms,

\implies\text{Sum of product of zeroes taken two at a time =}\dfrac{(\alpha\beta+\alpha\gamma+\gamma\beta)+3(\alpha\beta\gamma)}{1-p-q}⟹Sum of product of zeroes taken two at a time =1−p−q(αβ+αγ+γβ)+3(αβγ)

Using (2) and (3),

Answered by dayanidhisharma19
3

Answer:

arithmetic mean = 111.6

geometric mean = 55.35

harmonic mean = 0.035

Arithmetic mean represents the above figures best.​

Step-by-step explanation:

Step 1:

We know that arithmetic mean is simply the average of all values.

Geometric mean is the the nth root product of n numbers

Harmonic mean is the arithmetic mean of reciprocals.

Step 2:

Family Income Inverse of income

A 85 0.011764706

B 70 0.014285714

C 10 0.1

D 75 0.013333333

E 500 0.002

F 8 0.125

G 42 0.023809524

H 250 0.004

I 40 0.025

J 36 0.027777778

Total 1116 0.346971055

Step 3:

arithmetic mean = Sum of family income / 10 = 1116/10 = 111.6

geometric mean = product of incomes ^ (1/10) = (85*70*10*75*500*8*42*250*40*36) ^ (1/10) = 55.35 (approximately)

harmonic mean = Sum of inverse of incomes / 10 = 0.346971055/10 = 0.035 (approximately)

As we see that arithmetic mean > geometric mean > harmonic mean

So, we can conclude that "Arithmetic mean represents the above figures best".​

Similar questions