The mth
and nth
terms of an A.P. are n and m
respectively . prove that (m+n)th term will be zero
Answers
Step-by-step explanation:
mth term =a+(m-1)d=n.......(1)
nth term =a+(n-1)d=m.......... (2)
subtracting equation(1)from (2) we get
(m-n)d=n-m
d=-1..................... (3)
now dividing equation (1)by(2)we get
[a+(m-1)d]÷[a+(n-1)d]=n÷m........ (4)
put the value of d from equation (3)to (4) we get
[a+1-m]m=[a+1-n]n
am+m-m^2=an+n-n^2
a (m-n)+(m-n)-(m-n)(m+n)
(m-n)[a+1-m-n]=0
since m-n could not be equal to zero
so, a=m+n-1........ (5)
(m+n)th term =a+(m+n-1)d
from equation (3)and (5) we get
(m+n)th term=a+a×-1=a-a=0 (proved ).
Answer:
Let the first term of AP = a
common difference = d
We have to show that (m+n)th term is zero or a + (m+n-1)d = 0
mth term = a + (m-1)d
nth term = a + (n-1) d
Given that m{a +(m-1)d} = n{a + (n -1)d}
⇒ am + m²d -md = an + n²d - nd
⇒ am - an + m²d - n²d -md + nd = 0
⇒ a(m-n) + (m²-n²)d - (m-n)d = 0
⇒ a(m-n) + {(m-n)(m+n)}d -(m-n)d = 0
⇒ a(m-n) + {(m-n)(m+n) - (m-n)} d = 0
⇒ a(m-n) + (m-n)(m+n -1) d = 0
⇒ (m-n){a + (m+n-1)d} = 0
⇒ a + (m+n -1)d = 0/(m-n)
⇒ a + (m+n -1)d = 0
Proved!