Physics, asked by ananta1998sahu, 9 months ago

the mtion of a particle is defined by the relation x(t)= 3sin2t+3cos2t+20 in metre m at rime t. find time at what time patricle attains maximum acceleration ​

Answers

Answered by nirman95
32

Answer:

Given:

Displacement time relationship has been given as follows :

x = 3 \sin(2t)  + 3 \cos(2t)  + 20

To find:

Time at which max acceleration os obtained

Calculation:

Acceleration is obtained by the 2nd order derivative of Displacement function.

v =  \dfrac{dx}{dt}

 =  > v =  \dfrac{d(3 \sin(2t)  + 3 \cos(2t)  + 20)}{dt}

 =  > v = 6 \cos(2t)  - 6 \sin(2t)

Again differentiation of velocity function :

a =  \dfrac{dv}{dt}

 =  > a =  \dfrac{d \{6 \cos(2t)  - 6 \sin(2t)  \}}{dt}

 =  > a =  - 12 \sin(2t)  - 12 \cos(2t)

 =  > a =  - 12\{  \sin(2t)   +   \cos(2t)  \}

Now for max value of sin and cos functions, we follow this rule :

 =  > a =  - 12 \sqrt{2} \{  \frac{1}{ \sqrt{2} }  \sin(2t)   +   \frac{1}{ \sqrt{2} }  \cos(2t)  \}

 =  > a =  - 12 \sqrt{2} \{  \cos(45 \degree)  \sin(2t)   +    \sin(45 \degree) \cos(2t)  \}

Following formula of sin (A + B) :

 =  > a =  - 12 \sqrt{2}  \{ \sin(2t + 45 \degree)  \}

Max value of sin(2t + 45°) is 1

 =  > a =  - 12 \sqrt{2}  \times  \{ 1  \}

 =  > a =  - 12 \sqrt{2}   \: m {s}^{ - 2}

So max Acceleration is :

 \boxed{ \red{ \huge{ \bold{ a_{max} =  - 12 \sqrt{2}   \: m {s}^{ - 2}  }}}}

Time for max acceleration can be found out by this way :

 \dfrac{da}{dt} = 0

=> \dfrac{d(-12\sqrt{2}\{\sin(2t+45\degree)\}}{dt} = 0

Simplifying , we get :

\cos(2t+45\degree)=0

We need to take general solution in this case :

=>2t+45\degree= (2n+1)\dfrac{\pi}{2}

=>2t+\dfrac{\pi}{4}= (2n+1)\dfrac{\pi}{2}

=>2t=\pi n + \dfrac{\pi}{4}

=> t = \dfrac{\pi n + \dfrac{\pi}{4}}{2}

So final answer :

\boxed{\huge{\blue{\bold{=> t = \dfrac{\pi n + \dfrac{\pi}{4}}{2}}}}}


ShivamKashyap08: Nice! :)
nirman95: Thanks :-)
Anonymous: Perfect ✨
nirman95: Thanks :-)
Answered by Anonymous
40

AnswEr :

The position of the particle is defined as :

 \sf \: x(t) = 3sin2t + 3cos2t + 20

Differentiating x w.r.t t,we get velocity :

 \sf \: v =  \dfrac{dx}{dt}  \\  \\  \longrightarrow \:  \sf \: v =  \dfrac{d(3sin2t + 3cos2t + 20)}{dt}   \\  \\  \longrightarrow \:  \sf \: v = 3cos2t \times  \dfrac{d(2t)}{dt }  - 3sin2t \times  \dfrac{d(2t)}{dt}  + 0 \\  \\  \longrightarrow \:  \sf \: v = 6(cos2t - sin2t) \:  \:  {ms}^{ - 1}

Differentiating v w.r.t to t,we get acceleration :

 \sf \: a \: =  \dfrac{dv}{dt}  \\  \\  \longrightarrow \:  \sf \: a =  \dfrac{d( - 6sin2t +6cos2t )}{dt}   \\  \\  \longrightarrow \:  \sf \: a \: =  - 6cos2t \times  \dfrac{d(2t)}{dt }  - 6sin2t \times  \dfrac{d(2t)}{dt}  \\  \\  \longrightarrow \:  \sf \: a =  - 12(cos2t + sin2t) \:  \:  {ms}^{ - 2}

We have to calculate the max acceleration :

 \sf \:  \dfrac{da}{dt}  = 0 \\  \\  \implies \:  \sf \:  \dfrac{d \bigg( - 12( sin2t  + cos2t) \bigg)}{dt}  = 0 \\  \\  \implies \:  \sf \:  -24cos2t + 24sin2t = 0 \\  \\  \implies \:  \sf \:  24sin2t  = 24cos2t \\  \\  \implies \:  \sf sin2t = sin(90 - 2t) \: \\ \\ \implies \:  \sf \:  2t = 90 - 2t \\  \\  \implies \:  \sf \: 4t = 90 \\  \\  \implies \:  \sf  \: t = \dfrac{\pi}{2} \times \dfrac{1}{4}  \\  \\  {\implies \:  \boxed{ \boxed{ \sf \: t =  \dfrac{\pi}{8} }}}

At t = π/8,the particle achieves maximum acceleration


ShivamKashyap08: Good Work! :)
Anonymous: : D
nirman95: Awesome ❤️
Anonymous: Thank you bhau ♥️
Similar questions