Math, asked by sabarinathpradeep, 8 months ago

The mulplicative inverse of complex number z =√3+2i
(a)z- is
(b)|z| is
(c) z-1. is

Answers

Answered by Anonymous
1

Given ,

The complex number is z =√3+2i

We know that , the mulplicative inverse of complex number z = a + ib is given by

 \boxed{ \tt{ {z}^{ - 1} =  \frac{1}{z} =  \frac{ \bar{z}}{ { |z| }^{2} }   }}

Where ,

  \tt \bar{z} = Conjugate of z

 \tt  |z|  = Modulus of z

Thus ,

 \tt \implies {z}^{ - 1}  =  \frac{ \sqrt{3} - 2i }{  {\{   \sqrt{ {(3)}^{2} +  {(2)}^{2}  }  \}}^{2} }

 \tt \implies {z}^{ - 1}  =  \frac{ \sqrt{3} - 2i }{ { \{ \sqrt{3 + 4}  \}}^{2} }

 \tt \implies {z}^{ - 1}  =  \frac{ \sqrt{3}  - 2i}{7}

 \tt \implies {z}^{ - 1}  =  \frac{ \sqrt{3} }{7}  -  \frac{2i}{7}

or

 \tt \implies   {z}^{ - 1}   =  \frac{1}{ \sqrt{3}  + 2i}

 \tt \implies   {z}^{ - 1}   =  \frac{1 \times ( \sqrt{3}   - 2i)}{( \sqrt{3} +2i)( \sqrt{3}   - 2i) }

 \tt \implies   {z}^{ - 1}   =  \frac{ \sqrt{3} - 2i }{ {( \sqrt{3} )}^{2}  -{(2i)}^{2}  }

 \tt \implies   {z}^{ - 1}   =  \frac{ \sqrt{3} - 2i }{ 3 - 4( - 1)}

 \tt \implies   {z}^{ - 1}   =  \frac{ \sqrt{3} - 2i }{ 7}

\tt \implies {z}^{ - 1}  =  \frac{ \sqrt{3} }{7}  -  \frac{2i}{7}

Therefore , the multiplicative inverse is √3/7 - 2i/7

_____________ Keep Smiling

Similar questions