the nth derivative of 5xpower n
Answers
Step-by-step explanation:
Remember that:
cosh ix = cosx → cosh x = cos(x/i) = cos(-ix) = cos(ix)
so
y= cosh4xcos3x
y= cos(4ix)cos3x
y= (1/2)(cos(3+4i)x + cos(3–4i)x)
y´= (1/2)(-(3+4i)sin(3+4i)x -(3–4i)sin(3–4i)x)
y´= (-1/2)((3+4i)sin(3+4i)x+(3–4i)sin(3–4i)x)
y´´= (-1/2)((3+4i)^2cos(3+4i)x+(3–4i)^2cos(3–4i)x)
y´´´= (+1/2)((3+4i)^3sin(3+4i)x+(3–4i)^3sin(3–4i)x)
y(4)´= (+1/2)((3+4i)^4cos(3+4i)x+(3–4i)^4cos(3–4i)x)
y(5)´= (-1/2)((3+4i)^5sin(3+4i)x+(3–4i)^5sin(3–4i)x)
Step-by-step explanation:
Remember that:
cosh ix = cosx → cosh x = cos(x/i) = cos(-ix) = cos(ix)
so
y= cosh4xcos3x
y= cos(4ix)cos3x
y= (1/2)(cos(3+4i)x + cos(3–4i)x)
y´= (1/2)(-(3+4i)sin(3+4i)x -(3–4i)sin(3–4i)x)
y´= (-1/2)((3+4i)sin(3+4i)x+(3–4i)sin(3–4i)x)
y´´= (-1/2)((3+4i)^2cos(3+4i)x+(3–4i)^2cos(3–4i)x)
y´´´= (+1/2)((3+4i)^3sin(3+4i)x+(3–4i)^3sin(3–4i)x)
y(4)´= (+1/2)((3+4i)^4cos(3+4i)x+(3–4i)^4cos(3–4i)x)
y(5)´= (-1/2)((3+4i)^5sin(3+4i)x+(3–4i)^5sin(3–4i)x)