English, asked by baigaaliya143, 1 month ago

The nth term in the Maclaurin's expansion of 1/1-x

Answers

Answered by MaheswariS
2

\textbf{Given:}

\mathsf{\dfrac{1}{1-x}}

\textbf{To find:}

\textsf{n th term in the expansion of}\;\mathsf{\dfrac{1}{1-x}}

\textbf{Solution:}

\textsf{Let}\;\mathsf{f(x)=\dfrac{1}{1-x}=(1-x)^{-1}\;\implies\;f(0)=1}

\mathsf{f^1(x)=(1-x)^{-2}\;\implies\;f^1(0)=1=1!}

\mathsf{f^2(x)=2(1-x)^{-3}\;\implies\;f^2(0)=2=2!}

\mathsf{f^3(x)=6(1-x)^{-4}\;\implies\;f^3(0)=6=3!}

\mathsf{f^4(x)=24(1-x)^{-5}\;\implies\;f^4(0)=24=4!}

\textsf{Proceeding like this, we get}

\mathsf{f^{n-1}(0)=(n-1)!}

\textsf{The maclaurin series of f(x) is}

\mathsf{f(x)=f(0)+\dfrac{f^1(0)}{1!}x^1+\dfrac{f^2(0)}{2!}x^2+\;.\;.\;.\;.\;.}

\mathsf{n\;th\;term,\;T_n=\dfrac{f^{n-1}(0)}{(n-1)!}}x^{n-1}}

\implies\mathsf{T_n=\dfrac{(n-1)!}{(n-1)!}}x^{n-1}}

\implies\boxed{\mathsf{T_n=x^{n-1}}}

\textbf{Find more:}

First two terms in expansion of e^x.secx by maclaurins theorem is

https://brainly.in/question/37802432


pulakmath007: Excellent
Similar questions