Math, asked by aditya2700000, 6 months ago

The nth term of an A.P. -3,-7,-11,-15,.............. is *
1-4n
4n+1
3n-1
none of these

Answers

Answered by ItzAditt007
15

Answer:-

The Required Answer Is Option 1) 1 - 4n.

Explanation:-

Given:-

  • An AP -3, -7, -11, -15, ..................n

To Find:-

  • The nth term.

Formula Used:-

\\ \large\bf\longrightarrow a_n = a + (n-1)d.

Where,

  • \tt a_n = n th term.

  • a = First term.

  • n = Number of terms.

  • d = Common Difference.

So Here,

  • a = -3.

  • d = -7 - (-3) = -4.

Now,

By putting the above values in the formula we get:-

\\ \tt\mapsto a_n = a + (n - 1)d.

\\ \tt\mapsto a_n = ( - 3) + (n - 1)( - 4). \\   \rm \: by \:  \: putti ng \:  \: values.

\\ \tt\mapsto a_n =  - 3 + ( - 4n) + 4. \\  \rm by  \: \: op en in g \:  \: brackets.

\\ \tt\mapsto a_n =  - 3 + 4 - 4n.

\\ \large \red{\mapsto \boxed{ \blue{ \bf a_n = 1 - 4n.}}}

Therefore The Sum of n th Terms is 1 - 4n.


amitkumar44481: Great :-)
Answered by Arceus02
12

\rm{\blue{\underline{\underline{\bold{Answer:-}}}}}

\sf{\pink{\therefore 1 - 4n }}

{\orange{\underline{\underline{\bold{Formula\: Used:-}}}}}

\dagger\large{\boxed{\sf{{a}_{n} = a + (n - 1)d}}}

\bf{where:-}

\tt{\quad \quad \bullet {a}_{n} \: is\: the\: nth\: term \:of \:A.P.}

\tt{\quad \quad \bullet a\: is \:the \:first\: term \:of\: A.P.}

\tt{\quad \quad \bullet d \:is \:the\: common\: difference}

\tt{\quad \quad \bullet n\: is\: the \:number\: of \:terms}

\rm{\red{\underline{\underline{\bold{Explanation:-}}}}}

\underline{\bf{Here;}}

\tt{\quad \quad \bullet a = -3}

\tt{\quad \quad \bullet d = (-7) - (-3)}

\mapsto\tt{d = -4}

\bf{\underline{Using \:the\: formula:-}}

\sf{{a}_{n} = a + (n - 1)d} \hookrightarrow\sf{{a}_{n} = -3 + (n - 1)(-4)}

\hookrightarrow\sf{{a}_{n} = -3 + (-4n) + 4}

\hookrightarrow \sf{\underline{\underline{{a}_{n} = 1 - 4n}}}

\red{\large{\underline{\boxed{\bf{Ans. = 1 - 4n}}}}}

Similar questions