Math, asked by BrainlyHelper, 1 year ago

The nth term of an A.P. is 6n + 2. Find the common difference.

Answers

Answered by nikitasingh79
2

Answer:

The Common Difference is 6.

Step-by-step explanation:

Given :  

nth term of an A.P , an = 6n + 2……….(1)

On Putting n = 1,2 ,3 & 4 in eq 1,

n = 1

a1 = 6 × 1 + 2

a1 = 8

 

n = 2

a2 = 6 × 2 + 2  

a2 = 14

 

n = 3

a3 = 6 × 3 + 2

a3  = 20

 

n = 4  

a4 = 6 × 4 + 2

a4 = 24 + 2  

a4 = 26

A.P  8, 14, 20 , 24 ...........

Common Difference , d = a2 - a1

d = 14 - 8

d = 6

Hence, the Common Difference is 6.

HOPE THIS ANSWER WILL HELP YOU...

Answered by Anonymous
25

{\mathfrak{\red{\underline{\underline{Answer:-}}}}}

\sf{Common\;difference = 6}

{\mathfrak{\red{\underline{\underline{Explanation:-}}}}}

Given:-

\sf{a_{n}=6n+2}

\sf{Therefore,}

\sf{a_{1}=6\times 1+2 = 8}

\sf{a_{2}=6\times 2+2 = 14}

\sf{a_{3}=6\times 3+2 = 20}

\sf{So,\;here\;a.p.\;is:8,\;14,\;20,.....}

\sf{Common\;difference(d)=a_{2}-a_{1}}

\sf{=14-8}

\sf{=6}

{\boxed{\boxed{\bf{\red{So,\;the\;common\;difference\;is\;6}}}}}

{\mathfrak{\red{\underline{\underline{Some\;important\;formulas\;related\;to\;chapter:-}}}}}

\sf{1).\;a_{n}=a+(n-1)d}

\sf{2).\;s_{n}=\dfrac{n}{2}[2a+(n-1)d]}

\sf{3).\;s_{n}=\dfrac{n}{2}[a+l]}

\sf{4).\;d=a_{2}-a_{1}}

\sf{Where,}

\sf{l=last\;term}

\sf{d=common\;difference}

\sf{a\;or\;a_{1}=first\;term}

\sf{s=sum\;of\;n\;terms}

\sf{a_{n}=number\;of\;terms}

Similar questions