Math, asked by sujalmajhi11, 1 year ago

The nth term of an ap is given by (-4n+15).Find the sum of first 20 terms of this A.P.

Answers

Answered by BrainlyConqueror0901
68

Answers:

\huge{\pink{\boxed{\green{\sf{S_{20}=-540}}}}}

Step-by-step explanation:

\huge{\pink{\boxed{\green{\underline{\red{\sf{SOLUTION-}}}}}}}

  \:  \:  \: \:  \:  \:  \:  \:  \:  \: { \orange{given}} \\ { \pink{ \boxed{ \green{ a_{n} = ( - 4n + 15) }}}} \\  \\{ \blue{ to \: find}} \\ { \purple{ \boxed{ \red{S _{20} = ?  }}}}

According to given question:

Let n =1,2,3,4,5,6.....

 \to n  = 1\\ \to  a_{1 } =  - 4 \times 1 + 15 \\  \to  a_{1}  =  - 4 + 15 \\  { \boxed{\to a_{1} = 11 }}\\  \\  \to n = 2 \\  \to  a_{2} =  - 4 \times 2 + 15 \\ \to   a _{2} =  - 8 + 15 \\{ \boxed{ \to   a _{2} = 7 }}\\  \\  \to n = 3 \\   \to   a _{3} =  - 4 \times 3 + 15 \\  \to   a _{3} =  - 12 + 15 \\ { \boxed{\to   a _{3} = 3}} \\  \\  \therefore a. p = 11.7.3...... \\ \to common \:  difference =  a_{2} -  a_{1} = 7 - 11 =  - 4 \\  \to a1 = 11

So we find the value of first term, common difference.

We know the formula for sum of nth terms.

 \to  S_{n}  = \frac{n}{2} (2a + (n - 1)d) \\  \to S_{20} =  \frac{20}{2} (2  \times 11 + (20 - 1) \times  - 4) \\ \to S_{20} =10(22 + 19  \times  - 4) \\  \to S_{20} =10(22  - 76) \\  \to S_{20} =10( - 54) \\ { \pink{ \boxed{ \green{\therefore S_{20} = - 540}}}}

_________________________________________

Similar questions