Physics, asked by evapauly8617, 8 months ago

The number density of free electrons in a copper conductor is 8.5 × 10 to the power 28 m-3 . The area of cross section of the wire is 2.0 × 10-6m2 and it is carrying a current of 3.0 A.Calculate drift velocity.(e = 1.6*10 to the power minus 19) *

Answers

Answered by vishakha0987
0

Explanation:

Number density of electrons, n = 8.5 x 1028 m– 3 Current carried by the wire, I = 3.0 A Area of cross-section of the wire, A = 2.0 x 10–6 m2 ... Charge on electron, e = 1.6 x 10–19 C

Answered by Anonymous
42

Explanation:

\Large{\green{\underline{\underline{\sf{\blue{Solution:}}}}}}

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

\hookrightarrow Number density of free electrons in a copper conductor, \sf n\:=\:8.5\times 10^{28}m^{-3}

\hookrightarrow Length of the copper wire, \sf l\:=\:3.0\,m

\hookrightarrow Area of cross-section of the wire, \sf A\:=\:2.0\times 10^{-6}m^2

\hookrightarrow Current carried by the wire, \sf I\:=\:3.0\,A

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

Current carried by the wire is given by the relation,

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

\longrightarrow \boxed{\tt{\red{I\:=\:nA\,e\,V_d}}}

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

Where,

\mapsto \sf e\:=\:1.6\times 10^{-19}C = Electric charge

\mapsto \sf V_d\:=\: \dfrac{Length\:of\:the\:wire\,(l)}{Time\:taken\:to\:cover\,l(t)}

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

\leadsto \sf I\:=\:nA\,e \dfrac{l}{t}

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

\leadsto \sf t\:=\: \dfrac{nA\,e\,l}{I}

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

\sf t\:=\: \dfrac{\cancel{3}\times 8.5\times 10^{28}\times 2\times 10^{-6}\times 1.6\times 10^{-19}}{\cancel{3}}

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

\leadsto \sf t\:=\:2.7\times 10^4s

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

\leadsto Hence, the time taken by an electron to drift from one end of the wire to the other is \sf{\orange{\:2.7\times 10^4s}}

Similar questions