Math, asked by poojasoniftd, 1 month ago

the number obtained by interchanging the digit of a 2-digit number is 9 more than the orignal number. if the sum of the digits is 9, than find the orignal number.​

Answers

Answered by ShírIey
133

Given: The sum of the digits is 9. & The number obtained by Interchanging the digits of a two – digit number is 9 more than the Original number.

Need to find: The Original number?

Let's consider that the two digits be x and y respectively.

Hence,

  • Original number = (10x + y).

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀⠀

:\implies\sf x + y = 9\\\\

:\implies\sf y = 9-x\qquad\quad\bigg \lgroup \frak Eq^n \;( \: I \: ) \bigg\rgroup\\\\

\underline{\bigstar\:{\pmb{\mathcal{ACCORDING\; \: TO\;  \: THE\; QUESTION\; :}}}}\\\\

  • The number obtained by Interchanging the digits of a two – digit number is 9 more than the Original number.

\dashrightarrow\sf 10y + x = 10x + y + 9\\\\

\dashrightarrow\sf 9y = 9x + 9 \\\\

\dashrightarrow\sf y = x + 1\\\\

\dashrightarrow\sf x + 1 = 9-x\qquad\quad\bigg \lgroup\sf From\;eq^n \;( \: I \: ) \bigg\rgroup\\\\

\dashrightarrow\sf 2x = 8\\\\

\dashrightarrow\sf x = \cancel\dfrac{8}{2}\\\\

\dashrightarrow\underline{\boxed{\pmb{\frak{\pink{x =4}}}}}\:\bigstar\\\\

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀⠀

\underline{\bf{\dag} \:\mathfrak{As\;we\;know\: that\: :}}\\\\⠀⠀⠀⠀

\dashrightarrow\sf x + y = 9\\\\

\dashrightarrow\sf 4 + y = 9 \\\\

\dashrightarrow\sf y = 9 - 4\\\\

\dashrightarrow\underline{\boxed{\pmb{\frak{\pink{y = 5}}}}}\;\bigstar\\\\

O r i g i n a lN u m b e r :

\twoheadrightarrow\sf Number = 10x + y\\\\

\twoheadrightarrow\sf Numebr = 10\Big(4\Big) + 5\\\\

\twoheadrightarrow\sf Number = 40 + 5\\\\

\qquad\twoheadrightarrow\boxed{\boxed{\pmb{\frak{\purple{45}}}}}\:\bigstar\\\\

\therefore{\underline{\textsf{Hence, the Original number is \textbf{45}.}}}

Answered by MяMαgıcıαη
258

\large\underline{\sf{Given}}

\:

» The number obtained by interchanging the digit of a 2 - digit number is 9 more than the original number.

» The sum of the digits of two digit number is 9.

\:

\large\underline{\sf{To\:Find}}

\:

» Original number?

\:

\large\underline{\sf{Solution}}

\:

  • Let ten's digit of a number be m

  • And one's digit of a number be n

  • So, Original number = 10m + n

  • And number obtained after interchanging digits = 10n + m

\:

\underline{\sf{\bigstar\:According\:to\:the\:Question\::}}

\:

\sf \longrightarrow \: Sum\:of\:digits\:of\:two\:digit\:number\:=\:9

\\ \sf \longrightarrow \: m + n = 9

\\ \sf \longrightarrow \: \pink {m = 9 - n}\qquad\big\lgroup 1 \big\rgroup

\:

Also,

\:

\sf \longrightarrow \: Interchanged\:number = \big(Original\:number\big)\:+\:9

\\ \sf \longrightarrow \: 10n + m = \big(10m + n\big) + 9

\\ \sf \longrightarrow \: 10n + m = 10m + n + 9

\\ \sf \longrightarrow \: 10n - n = 10m - m + 9

\\ \sf \longrightarrow \: 9n = 9m + 9

\\ \sf \longrightarrow \: 9n = 9\big(m + 1\big)

\\ \sf \longrightarrow \: \dfrac{\cancel{9}n}{\cancel{9}} = m + 1

\\ \sf \longrightarrow \: n = m + 1

\\ \sf \longrightarrow \: \pink{m = n - 1} \qquad\big\lgroup 2 \big\rgroup

\:

From [1] and [2], we get,

\:

\sf \longrightarrow \: 9 - n = n - 1

\\ \sf \longrightarrow \: 9 + 1 = n + n

\\ \sf \longrightarrow \: 2n = 10

\\ \sf \longrightarrow \: n = {\cancel{\dfrac{10}{2}}}

\\ \sf \longrightarrow \: \pink{ n = 5}

\:

Putting value of 'n' in [1],

\:

\sf \longrightarrow \: m = 9 - 5

\\ \sf \longrightarrow \:\pink{ m = 4 }

\:

Finding original number,

\:

\sf \longrightarrow \: Original\:number = 10m + n

\:

Putting values of 'm' and 'n',

\:

\sf \longrightarrow \: Original\:number = 10\big(4\big) + 5

\\ \sf \longrightarrow \: Original\:number = \big(10\:\times\:4\big) + 5

\\ \sf \longrightarrow \: Original\:number = 40 + 5

\\ \sf \longrightarrow \:\pink{ Original\:number = 45}

\:

\therefore\:{\underline{\sf{Original\:number\:is\:{\textsf{\textbf{45}}}}}}

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions