Math, asked by HIYANSHKHANDELWAL, 1 month ago

The number obtained on ratoonalising the denominator of 1/under root 7 - 2 is

please help me it's very urgent
my STANDARD is 6​

Answers

Answered by Anonymous
15

Solution -

We have,

  • \sf{\dfrac{1}{\sqrt{7} - 2}}

Rationalising the denominator

\tt:\implies\: \: \: \: \: \: \: \: {\dfrac{1}{\sqrt{7} - 2} \times \dfrac{\sqrt{7} + 2}{\sqrt{7} + 2}}

\tt:\implies\: \: \: \: \: \: \: \: {\dfrac{\sqrt{7} + 2}{(\sqrt{7})^2 - (2)^2}}

\tt:\implies\: \: \: \: \: \: \: \: {\dfrac{\sqrt{7} + 2}{7 - 4}}

\bf:\implies\: \: \: \: \: \: \: \: {\purple{\dfrac{\sqrt{7} + 2}{3}}}

\underline{\sf{Hence,\: the\: required\: number\: is}}

⠀⠀⠀⠀⠀⠀⠀•⠀ \bf{\dfrac{\sqrt{7} + 2}{3}}

━━━━━━━━━━━━━━━━━━━━━━

Answered by IntrovertLeo
5

Given:

The expression -

\bf \longmapsto \dfrac{1}{ \sqrt{7}-2}

What To Find:

We have to

  • Rationalise the denominator.

How To Find:

To find it, we have to

  • First, find the conjugate or the multiple inverses of the denominator.
  • Next, multiply the conjugate with the denominator and numerator.
  • Then, simplify the expression using identities.
  • Then, if the denominator is rational then, it is rationalised.

Solution:

\sf \longmapsto \dfrac{1}{ \sqrt{7}-2}

The conjugate is,

\sf \longmapsto \sqrt{7} + 2

Multiply the expression with the conjugate.

\sf \longmapsto \dfrac{1}{ \sqrt{7} - 2} \times  \dfrac{\sqrt{7}+ 2}{ \sqrt{7} +2}

Multiply the numerator,

\sf \longmapsto \dfrac{\sqrt{7} + 2}{ \sqrt{7} - 2 \times \sqrt{7} +2}

Using the identities:- (a - b) (a + b) = a² - b²

\sf \longmapsto \dfrac{\sqrt{7} + 2}{(\sqrt{7})^2-2^2}

Find the squares,

\sf \longmapsto \dfrac{\sqrt{7} + 2}{7 - 4}

Subtract 4 from 7,

\sf \longmapsto \dfrac{\sqrt{7} + 2}{3}

Since 3 is a rational number,

∴ Hence rationalised.

Final Answer:

∴ Thus, the answer is \bf \dfrac{\sqrt{7}+2}{3} after rationalising the denominator.

Similar questions