Math, asked by sweetie08, 1 year ago

The number of 4 digit numbers formed with the digits 1, 1, 2, 2, 3, 4

Answers

Answered by genious2000
60

102 numbers of 4-digit numbers will be formed.

Case 1: Permutations of {1,2,3,4}

       Total:  4! = 24 ways

Case 2: Permutations with 1 pair of identical digits:

       Choose the 1 digit to repeat in 2 ways in C(2,1) = 2 ways          

       Choose the 2 digits that don't repeat in C(3,2) = 3 ways.

       The number of permutation is 4!/2! = 24/2 = 12 ways

       Total: 2×3×12 = 72 ways

Case 3: Permutations with 2 pairs of identical digit.

That's the permutations of 1,1,2,2

       Total: 4!/(2!2!) = 24/(2·2) = 24/4 = 6

Total: 24+72+6 = 102 ways.

FYI, here are all 102 such 4-digit numbers:

1122 1123 1124 1132 1134 1142 1143 1212 1213 1214

1221 1223 1224 1231 1232 1234 1241 1242 1243 1312

1314 1321 1322 1324 1341 1342 1412 1413 1421 1422

1423 1431 1432 2112 2113 2114 2121 2123 2124 2131

2132 2134 2141 2142 2143 2211 2213 2214 2231 2234

2241 2243 2311 2312 2314 2321 2324 2341 2342 2411

2412 2413 2421 2423 2431 2432 3112 3114 3121 3122

3124 3141 3142 3211 3212 3214 3221 3224 3241 3242

3411 3412 3421 3422 4112 4113 4121 4122 4123 4131

4132 4211 4212 4213 4221 4223 4231 4232 4311 4312

4321 4322


sweetie08: thank you so much
genious2000: Welcome dear
Answered by Prateek08
51

Answer:

Step-by-step explanation:

Attachments:
Similar questions