Math, asked by SparklingBoy, 1 month ago

The number of common tangents to circle
x² + y² - 4x - 6y - 12 = 0 and
x² + y² + 6x + 18y + 26 = 0 is :

a) 1

b) 2

c) 3

d) 4

\bf Note: Try To Use LaTex

Answers

Answered by Anonymous
63

Answer:- Option (C) => 3

Explanation:-

(c) Central Idea Number of common tangents depends on the position of the circle with respects to each other.

(i) If circles touch externally.

{\sf\bold{{C_{1} }}}{\sf\bold{{C_{2} }}} = {\sf\bold{{r_{1} }}} + {\sf\bold{{r_{2} }}},3  \: {\sf\bold{{common \: tangents }}}</p><p></p><p>

(ii) If circles touches internally

{\sf\bold{{C_{1} }}}{\sf\bold{{C_{2} }}} = {\sf\bold{{r_{2} }}} - {\sf\bold{{r_{1} }}},{\sf\bold{{1 \: common \: tangents }}}

(iii) If circles do not touches each other,

4 common tangents.

Given Equations of circles are

x² + y² - 4x - 6y - 12 = 0 -------> (i)

x² + y² + 6x + 18y + 26 = 0 ---------> (ii)

center \: of \: circles \: (i) \: is \:{\sf{{C_{1} }}}  (2,3) \: and \:  \\ radius.

 =  \sqrt{4 + 9 + 12}  = 5({\sf\bold{{r_{1} }}} ) \:  \:  \: \:  \:  \:  (say)

centre \: of \: circle \: (ii) \: is \: {\sf\bold{{C_{2} }}} ( - 3, - 9) \: and \:  \\ radius.

 =  \sqrt{9 + 81 - 26}  = 8({\sf\bold{{r_{2}) }}}  \:  \:  \:  \:  \:  \: (say)

Now, {\sf\bold{{C_{1} }}}{\sf\bold{{C_{2} }}} =  \sqrt{(2 + 3) {}^{2} + (3 + 9) {}^{2}  }

{\sf\bold{{C_{1} }}}{\sf\bold{{C_{2} }}} =  \sqrt{5 {}^{2}  + 12 {}^{2} }  = \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \sqrt{25 + 144 = 13}

Also, {\sf\bold{{r_{1} }}} +  {\sf\bold{{r_{2} }}} = 5 + 8 = 13

\therefore {\sf\bold{{C_{1} }}} {\sf\bold{{C_{2} }}} =  {\sf\bold{{r_{1} }}} +  {\sf\bold{{r_{2} }}}

Thus, both circles touch each other externally.

Hence, there are three common tangents.

Answered by Atlas99
24

Number of common tangents depend on the position of the circle with respect to the each other. (i) If circles touch externally C₁C₂ = ₁+ 2,3

common tangents

(ii) If circles touch internally → C₁ C₂ = 2-1, 1

common tangents (iii) If circles do not touch each other, 4 common tangents

Given equations of circles are

X₂ +y²-4x-6y-12 = 0 .. (1)

x²+y²+6x+18y+26 =0 ... (ii)

Centre of circle (i) is C1 (2,3) and

radius -√4+9+ 12 = 5 (r₁)

Centre of circle (ii) is C2(-3,-9) and

radius √9+81-26= 8 (r₂)

Now, C₁ C₂ = √(2+3)² + (3 + 9)²

➪ C₁ C₂ = √5²+12²

C₁ C₂ = √25+ 144 = 13

₁+r₂ = 5+ 8 = 13

Also, C₁ C₂ = ₁ +r₂

Thus, both circles touch each other externally. Hence, there are three common tangents.

Similar questions