The number of complex numbers z such that |z−1|=|z+1|=|z−i| is ?
Answers
Answered by
2
introduction to pure mathematics. I am pretty sure I am close to the answer but I can't quite decide why this proves that there is no complex numbers:
|z|=|z+i√5|=1|z|=|z+i√5|=1
cos²Θ+(isinΘ+i5–√)²−−−−−−−−−−−−−−−−−−−√=1–√cos²Θ+(isinΘ+i5)²=1
cos²Θ−sin²Θ−25–√sinΘ−5=1cos²Θ−sin²Θ−25sinΘ−5=1
cos²Θ−(1−cos²Θ)−25–√sinΘ−5=1cos²Θ−(1−cos²Θ)−25sinΘ−5=1
2cos²Θ−2√5sinΘ−5=0
|z|=|z+i√5|=1|z|=|z+i√5|=1
cos²Θ+(isinΘ+i5–√)²−−−−−−−−−−−−−−−−−−−√=1–√cos²Θ+(isinΘ+i5)²=1
cos²Θ−sin²Θ−25–√sinΘ−5=1cos²Θ−sin²Θ−25sinΘ−5=1
cos²Θ−(1−cos²Θ)−25–√sinΘ−5=1cos²Θ−(1−cos²Θ)−25sinΘ−5=1
2cos²Θ−2√5sinΘ−5=0
Similar questions
Math,
8 months ago
CBSE BOARD X,
8 months ago
English,
8 months ago
English,
1 year ago
Hindi,
1 year ago