Math, asked by surya070525, 3 months ago

The number of distinct positive real roots of the equation (x2+6)2−35x2=2x(x2+6) is​

Answers

Answered by Arceus02
4

We're given,

( {x}^{2}  + 6) {}^{2}  - 35 {x}^{2}  = 2x( {x}^{2}  + 6)

Expanding the first term of LHS using (a + b)² = a² + b² + 2ab, with a = x² and b = 6,

 \longrightarrow { ({x}^{2}) }^{2} +  {6}^{2}   + 2( {x}^{2})(6)   - 35 {x}^{2}  = 2x( {x}^{2}  + 6)

 \longrightarrow {x}^{4} + 36   + 12 {x}^{2}    - 35 {x}^{2}  = 2x( {x}^{2}  + 6)

Removing the brackets in RHS,

 \longrightarrow {x}^{4} + 36   + 12 {x}^{2}    - 35 {x}^{2}  = 2 {x}^{3}  + 12x

 \longrightarrow {x}^{4}  - 2 {x}^{3}  - 23 {x}^{2}   - 12x + 36=   0

We find x=1, satisfies the equation and is a root of LHS. Hence (x-1) should be a factor.

 \longrightarrow (x - 1)  \bigg\{ {x} ^{3}  -  {x}^{2} - 24x  - 36  \bigg\} = 0

We find x=-2, to be a root of second term. Hence (x+2) should be a factor.

 \longrightarrow (x - 1)(x + 2)  \bigg\{  {x}^{2} - 3x - 81   \bigg\} = 0

 \longrightarrow (x - 1)(x + 2)(x - 6)(x + 3) = 0

So either (x - 1) = 0, or (x + 2) = 0, or (x - 6) = 0, or (x + 3) = 0.

Hence,

\longrightarrow \underline{\underline{x = 1,6,-2,-3}}

Similar questions