The number of distinct solutions of the equation
5/4 cos²2x + cos⁴x + sin⁴x + cos⁶x + sin⁶x = 2
in the interval [0, 2????] is
Answers
Answered by
1
Step-by-step explanation:
Answer. = 8
54cos2 2x + cos4 x+ sin4 x+cos6 x + sin6 x =254cos2 2x + cos4 x+ sin4 x+cos6 x + sin6 x =2
54cos2 2x +(cos2 x+ sin2 x)2−2cos2 x sin2 x+(cos2 x+ sin2 x)3−3cos2 x sin2 x =254cos2 2x +(cos2 x+ sin2 x)2−2cos2 x sin2 x+(cos2 x+ sin2 x)3−3cos2 x sin2 x =2
54cos2 2x +1− sin2 2x2 +1−34sin2 x =254cos2 2x +1− sin2 2x2 +1−34sin2 x =2
54cos2 2x −54
hope it helped you out!!!:)
if it fulfilled your need pls mark it as brainliest
Answered by
1
Answer:
8
Step-by-step explanation:
Similar questions