Math, asked by mukul6956, 1 year ago

The number of hand shake in 30 persons.​

Answers

Answered by AvinashNanganure
48

Answer:

435

Step-by-step explanation:

no of handshake = C(30,2) = 30!/(2!28!) = 435

Answered by mysticd
1

 We \: use \: combination \: formula :

 \boxed { \pink { ^{n}C_{r} = \frac{n!}{(n-r)! r! }}}

 Where, \: n = Total \: number \: of \: persons \\r = number \: of \: handshakes \\Here, \: n = 30, \\r = 2

 Applying \:the \: formula

 Total \: number \: of \: hand \: shakes \\= \frac{30!}{(30-2)! 2!}\\= \frac{30!}{28! 2!}\\= \frac{30\times 29 \times 28! }{28! 2}\\= \frac{30\times 29 }{2} \\= 15 \times 29 \\= 435

Therefore.,

 \red {Total \: number \: of \: hand \: shakes} \green {= 435}

•••♪

Similar questions