Math, asked by roy179266, 8 months ago

The number of integral value(s) of x in the domain of the function f(x)
sin-[sin-1x], is

(a) Zero

(b) One

(c) Two

(d) Three​

Answers

Answered by amitnrw
2

Given :  f(x) = sin⁻¹( sin ⁻¹(x) )

To Find : The number of integral value(s) of x in the domain of the function f(x)

(a) Zero

(b) One

(c) Two

(d) Three​

Solution:

f(x) = sin⁻¹( sin ⁻¹(x) )

sin ⁻¹(x)   Hence x ∈ [-1 , 1 ]

and sin ⁻¹(x)   belongs to [-π/2 , π/2]

as π = 3.14

=>  sin ⁻¹(x)   belongs to [-1.57 , 1.57]

but again  sin⁻¹ is there hence  inside  sin ⁻¹(x) range must lie with in [-1 , 1 ]

Hence x ∉ - 1 , 1

so we left with only x = 0

f(x) = sin⁻¹( sin ⁻¹(x) )

=>  f(x) = sin⁻¹( sin ⁻¹(0) )

=> f(x) = sin⁻¹( 0 )

=> f(x) = 0

if  x = - 1

then   f(x) = sin⁻¹( sin ⁻¹(-1) )

=> f(x) = sin⁻¹( -π/2 )

=> f(x) = sin⁻¹( -1.57 )    while   - 1.57 < - 1

=> f(x) not defined

if  x =   1

then   f(x) = sin⁻¹( sin ⁻¹( 1) )

=> f(x) = sin⁻¹( π/2 )

=> f(x) = sin⁻¹(  1.57 )  while  1.57 > 1

=> f(x) not defined

Hence  The number of integral value(s) of x in the domain of the function f(x) sin⁻¹( sin ⁻¹(x) )    is  1

Learn  More:

Write the principal value of tan-¹(-1). - Brainly.in

brainly.in/question/17533155

Prove that tan inverse x +tan inverse y=tan inverse x+y by 1-xy

brainly.in/question/6632911

Similar questions