Math, asked by smart75, 8 months ago

the number of integral values of x satisfying the equation x^2-|x| -6 less than equal to zero is​

Answers

Answered by abhi178
1

Given info : equation is x² - |x| - 6 ≤ 0

To find : the number of integral solutions of x.

Solution : x² - |x| - 6 ≤ 0

⇒|x|² - |x| - 6 ≤ 0 [ we can use x² = |x|² ]

⇒|x|² - 3|x| + 2|x| - 6 ≤ 0

⇒|x|(|x| - 3) + 2(|x| - 3) ≤ 0

⇒(|x| + 2)(|x| - 3) ≤ 0

⇒-2 ≤ |x| ≤ 3

Case 1 : |x|≥ -2

It is true for all real value of x.

Case 2 : |x| ≤ 3

-3 ≤ x ≤ 3

Then, x belongs to [-3, 3]

x = -3, -2, -1, 0, 1, 2, 3

Therefore are seven integral solutions of x satisfying the equation x² - |x| - 6 ≤ 0

Answered by pulakmath007
53

SOLUTION :

TO DETERMINE

The number of integral values of x satisfying the equation

 \sf{ {x}^{2}  -  |x|   - 6 \leqslant 0\: }

EVALUATION

The given equation is

 \sf{ {x}^{2}  -  |x|   - 6 \leqslant 0\: } \:  \: .....(1)

 \sf{ CASE \:  :  1  \:  \: (  \: Let  \: x  > 0 \: ) }

Then from (1) we get

 \sf{ {x}^{2}  -  x  - 6 \leqslant 0\: }

 \implies  \sf{ {x}^{2}  - 3 x  + 2x - 6 \leqslant 0\: }

 \implies  \sf{ (x - 3) (x + 2)\leqslant 0\: }

 \implies  \sf{  - 2 \leqslant x \leqslant 3\: }

 \sf{Since  \: we \:  assumed \:  that \:  \: x > 0 }

So we have

 \sf{ 0 < x \leqslant 3\: } \:  \: ....(2)

 \sf{ CASE \:  :  2  \:  \: (  \: Let  \: x   \leqslant  0 \: ) }

The from (1) we get

 \sf{ {x}^{2}   + x  - 6 \leqslant 0\: }

 \implies \sf{  {x}^{2}  + 3x - 2x - 6 \leqslant 0\: }

 \implies \sf{  (x + 3)(x - 2) \leqslant 0\: }

 \implies \sf{   - 3 \leqslant x \leqslant 2\: }

 \sf{Since  \: we \:  assumed \:  that \:  \: x  \leqslant 0 }

So we have

 \sf{  - 3 \leqslant x \leqslant 0\: } \:  \: ....(3)

(2) and (3) together gives

  \sf{ - 3  \leqslant x \leqslant 3}

So the solution set is

 \sf{ \{ \:  \: x  \in \mathbb{Z} : \:  - 3 \leqslant x \leqslant 3  \: \} }

 \sf{And  \: the \:  solutions \:  are \:  - 3, - 2, - 1, 0, 1,2,3 \: }

Hence there are 7 integral values of x satisfying the equation

 \sf{ {x}^{2}  -  |x|   - 6 \leqslant 0\: }

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

If [1 2 3] B = [34],

then find the order of the matrix B

https://brainly.in/question/9030091

Similar questions