Math, asked by vishnuvardhan2712200, 2 months ago

The number of irrational roots of 2x4 + x3 – 11x2 + x + 2 = 0 is

Attachments:

Answers

Answered by pulakmath007
3

SOLUTION

TO DETERMINE

The number of irrational roots of

 \displaystyle \sf{2 {x}^{4}  +  {x}^{3} - 11 {x}^{2}   + x + 2 = 0}

EVALUATION

Here the given equation is

 \displaystyle \sf{2 {x}^{4}  +  {x}^{3} - 11 {x}^{2}   + x + 2 = 0}

We find the roots as below

 \displaystyle \sf{2 {x}^{4}  +  {x}^{3} - 11 {x}^{2}   + x + 2 = 0}

Dividing both sides by x² we get

 \displaystyle \sf{ \implies \: 2 {x}^{2}  +  x- 11   +  \frac{1}{x}  +  \frac{2}{ {x}^{2} }  = 0}

 \displaystyle \sf{ \implies \: 2  \bigg({x}^{2}  + \frac{1}{ {x}^{2} }  \bigg) +   \bigg( x   +  \frac{1}{x}   \bigg) - 11  = 0}

 \displaystyle \sf{ \implies \: 2  {\bigg({x}^{}  + \frac{1}{ {x}^{} }  \bigg) }^{2}  - 4 +   \bigg( x   +  \frac{1}{x}   \bigg) - 11  = 0}

 \displaystyle \sf{ \implies \: 2  {\bigg({x}^{}  + \frac{1}{ {x}^{} }  \bigg) }^{2}   +   \bigg( x   +  \frac{1}{x}   \bigg) - 15  = 0}

 \displaystyle \sf{ Let \:  \: y \:  =   \bigg( x   +  \frac{1}{x}   \bigg)}

Then from above we get

 \displaystyle \sf{ \implies \: 2   {y}^{2}   +   y - 15  = 0}

 \displaystyle \sf{ \implies \: y =  - 3 \:  \:  \: and \:  \:  \frac{5}{2} }

Now y = - 3 gives

 \displaystyle \sf{    \bigg( x   +  \frac{1}{x}   \bigg) =  - 3}

 \displaystyle \sf{  \implies \:  {x}^{2} + 3x + 1 = 0 }

 \displaystyle \sf{  \implies \: x =   \frac{ - 3  \pm \:  \sqrt{5} }{2}  }

 \displaystyle \sf{Again \:  \:  \:  y =   \frac{5}{2} \:  \: gives }

 \displaystyle \sf{    \bigg( x   +  \frac{1}{x}   \bigg) =   \frac{5}{2} }

 \displaystyle \sf{  \implies \: 2 {x}^{2} - 5x + 2 = 0 }

 \displaystyle \sf{  \implies \: x =  \frac{1}{2} \:  \:  \: and \:  \: 2  }

So all four roots are

 \displaystyle \sf{   \frac{ - 3  +  \:  \sqrt{5} }{2}   \: , \:  \frac{ - 3   -  \:  \sqrt{5} }{2}   \: , \:  \frac{1}{2} \: , \: 2 }

So there are two irrational roots

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Form a quadratic equation such that one of its roots is 5. Forma quadratic equation for it and write.

https://brainly.in/question/38226428

2. If p = 1 and q = –2 are roots of a quadratic equation, then quadratic equation will be

https://brainly.in/question/39283719

Similar questions