Math, asked by jacksonstorm007, 7 months ago

the number of polynomials having zeroes as -2 and 5 ​

Answers

Answered by iampriyanka1
15

 \huge \underline \mathfrak \red{  Solution}

 \sf \implies \: let \: polynomial \: be \:  {x}^{2}  - ( \alpha +  \beta )x +  \alpha  \beta

where \: zeros \: be \:  \alpha  \: and \:  \beta

( \alpha  +  \beta ) =  - 2

( \alpha  \beta ) = 5

 \sf \underline{now \: accoding \: to \: equation}

 {x}^{2}  + 2x + 5

━━━━━━━━━━━━━━━━━━

Answered by havockarthik30
18

Step-by-step explanation:

══════ •『 ♡』• ════════════ •『 ♡』• ═══════════

letpolynomialbex

2

−(α+β)x+αβ

( \alpha + \beta ) = - 2(α+β)=−2

( \alpha \beta ) = 5(αβ)=5

{x}^{2} + 2x + 5x

2 +2x+5

══════ •『 ♡』• ════════════ •『 ♡』• ════════════

ƒσłłσω мε

♥♥♥GIVE THANKS = TAKE THANKS ♥♥♥

Similar questions