Math, asked by lovish7617, 4 months ago

the number of positive integer solutions of 1/(2x-5) >4/x​

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

 \frac{1}{2x - 5}  >  \frac{4}{x}  \\

 =  >  \frac{1}{2x - 5}  -  \frac{4}{x} > 0 \\

 =  >  \frac{x - 4(2x - 5)}{x(2x - 5)} > 0 \\

 =  >  \frac{x - 8x + 20}{x(2x - 5)}  > 0 \\

 =  >  \frac{ - (7x - 20)}{x(2x - 5)}  > 0 \\

 =  >  \frac{7x - 20}{x(2x - 5)}  < 0 \\

 =  > x < 0 \:  \: or \:  \: x \in( \frac{5}{2}   \: \: to \:  \:  \frac{20}{7} )

Similar questions