Math, asked by papafairy143, 1 day ago

The number of positive integral solutions of

 {x}^{2} + 5x + 4 < 5 \sqrt{ {x}^{2} + 5x + 28 }

Answers

Answered by mathdude500
21

\large\underline{\sf{Solution-}}

Given inequality is

\rm \: {x}^{2} + 5x + 4 < 5 \sqrt{ {x}^{2} + 5x + 28 } \\

\rm \: {x}^{2} + 5x + 28 - 28 + 4 < 5 \sqrt{ {x}^{2} + 5x + 28 }

\rm \: ({x}^{2} + 5x + 28) - 24 < 5 \sqrt{ {x}^{2} + 5x + 28 }

Let assume that

\rm \: \sqrt{ {x}^{2} + 5x + 28 } = y \\

So, above expression can be rewritten as

\rm \:  {y}^{2} - 24 < 5y \\

\rm \:  {y}^{2} - 5y - 24 < 0 \\

\rm \:  {y}^{2} - 8y + 3y - 24 < 0 \\

\rm \:  y(y - 8) + 3(y - 8) < 0 \\

\rm \:  (y - 8)(y + 3) < 0 \\

\rm\implies \: - 3 < y < 8 \\

\rm\implies \: 0 <  {y}^{2}  < 64 \\

\rm\implies \: 0 <   {x}^{2} + 5x + 28  < 64 \\

Now, 2 cases arises

Consider Case :- 1

\rm \:  {x}^{2} + 5x + 28 > 0 \\

Since, its a quadratic equation such that a = 1 > 0 and Discriminant, D = 25 - 4 × 28 × 1 = 25 - 112 = - 87 < 0

\rm \:\rm\implies \:  {x}^{2} + 5x + 28 &gt; 0  \: is \: true \:  \forall \: x \in \: R -  -  - (1)\\

Consider Case :- 2

\rm \:  {x}^{2} + 5x + 28  &lt;  64 \\

\rm \:  {x}^{2} + 5x + 28  -  64 &lt; 0 \\

\rm \:  {x}^{2} + 5x  - 36 &lt; 0 \\

\rm \:  {x}^{2} + 9x - 4x  - 36 &lt; 0 \\

\rm \: x(x + 9) - 4(x + 9) &lt; 0 \\

\rm \: (x + 9)(x - 4) &lt; 0 \\

\rm\implies \: - 9 &lt; x &lt; 4 -  -  - (2) \\

From equation (1) and (2), we concluded that

\rm\implies \:x \:  \in \: R \:  \cap \: ( - 9,4) \\

\rm\implies \:x \:  \in \:  ( - 9,4) \\

Now, we need to find positive integral solutions. So, x can assume the values as

\rm \: x =  \{1, \: 2, \: 3 \} \\

 \red{\rm\implies\boxed{ \sf{ \:Number \: of \:  + ve \: integral \: solutions \:  =  \: 3}} }\\

\rule{190pt}{2pt}

Basic Concept Used :-

Let us consider a quadratic expression f(x) = ax² + bx + c, such that a > 0 and Discriminant, D = b² - 4ac < 0, then f(x) > 0

If a and b are two positive real numbers such that a < b, then (x - a)(x - b) < 0 implies a < x < b.

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{ |x|  &lt; y\rm\implies \: - y &lt; x &lt; y}\\ \\ \bigstar \: \bf{ |x|  \leqslant y\rm\implies \: - y \leqslant x \leqslant y}\\ \\ \bigstar \: \bf{ |x|  &gt; y\rm\implies \: x &lt;  - y \: or \: x &gt; y} \: \\ \\ \bigstar \: \bf{ |x| \geqslant y\rm\implies \:x \leqslant  - y \: or \: x \geqslant y}\\ \\ \bigstar \: \bf{ |x - a|  &lt; y\rm\implies \:a - y &lt; x &lt; a + y}\\ \\ \bigstar \: \bf{ |x - a|  \leqslant y\rm\implies \:a - y \leqslant x \leqslant a + y}\\ \\  \end{array} }}\end{gathered}\end{gathered}\end{gathered}


amansharma264: Excellent
mathdude500: Thank you so much
Answered by amansharma264
14

EXPLANATION.

Number of positive integrals solution.

⇒ x² + 5x + 4 < 5√(x² + 5x + 28).

As we know that,

We can write equation as,

⇒ x² + 5x + 4 = x² + 5x + 28 - 24.

We can write as,

⇒ x² + 5x + 28 - 24 < 5√(x² + 5x + 28).

Let we assume that,

⇒ √(x² + 5x + 28) = t.

Squaring on both sides of the equation, we get.

⇒ (x² + 5x + 28) = t².

Put the values in the equation, we get.

⇒ t² - 24 < 5t.

⇒ t² - 5t - 24 < 0.

As we know that,

Factorizes the equation into middle term splits, we get.

⇒ t² - 8t + 3t - 24 < 0.

⇒ t(t - 8) + 3(t - 8) < 0.

⇒ (t + 3)(t - 8) < 0.

Plot this point on wavy curve methods, we gt.

⇒ t + 3 = 0.

⇒ t = - 3.

⇒ t - 8 = 0.

⇒ t = 8.

⇒ t ∈ (- 3, 8).

⇒ - 3 < t < 8.

Put the values of √(x² + 5x + 28) = t in the equation, we get.

⇒ - 3 < √(x² + 5x + 28) < 8.

Squaring on both sides of the equation, we get.

⇒ (- 3)² < (x² + 5x + 28) < (8)².

⇒ 0 < (x² + 5x + 28) < 64.

Now we considered,

Two cases in this situations.

Case = 1.

⇒ x² + 5x + 28 > 0.

This equation is true for ∀ x ∈ R. - - - - - (1).

Case = 2.

⇒ x² + 5x + 28 < 64.

⇒ x² + 5x + 28 - 64 < 0.

⇒ x² + 5x - 36 < 0.

Factorizes the equation into middle term splits, we get.

⇒ x² + 9x - 4x - 36 < 0.

⇒ x(x + 9) - 4(x + 9) < 0.

⇒ (x - 4)(x + 9) < 0.

Put the points on wavy curve method, we get.

⇒ x - 4 = 0.

⇒ x = 4.

⇒ x + 9 = 0.

⇒ x = - 9.

We get,

⇒ x ∈ (- 9, 4).

⇒ - 9 < x < 4. - - - - - (2).

From equation (1) and (2), we get.

⇒ x ∈ (- 9, 4).

All points are : {- 8, - 7 , - 6, - 5, - 4, - 3, - 2, - 1, 0, 1, 2, 3}.

But we want only positive integrals,

Number of positive integrals = 3.


mathdude500: Great
amansharma264: Thanku so much
Similar questions