The number of positive integral solutions of
Answers
Given inequality is
Let assume that
So, above expression can be rewritten as
Now, 2 cases arises
Consider Case :- 1
Since, its a quadratic equation such that a = 1 > 0 and Discriminant, D = 25 - 4 × 28 × 1 = 25 - 112 = - 87 < 0
Consider Case :- 2
From equation (1) and (2), we concluded that
Now, we need to find positive integral solutions. So, x can assume the values as
Basic Concept Used :-
Let us consider a quadratic expression f(x) = ax² + bx + c, such that a > 0 and Discriminant, D = b² - 4ac < 0, then f(x) > 0
If a and b are two positive real numbers such that a < b, then (x - a)(x - b) < 0 implies a < x < b.
Additional Information :-
EXPLANATION.
Number of positive integrals solution.
⇒ x² + 5x + 4 < 5√(x² + 5x + 28).
As we know that,
We can write equation as,
⇒ x² + 5x + 4 = x² + 5x + 28 - 24.
We can write as,
⇒ x² + 5x + 28 - 24 < 5√(x² + 5x + 28).
Let we assume that,
⇒ √(x² + 5x + 28) = t.
Squaring on both sides of the equation, we get.
⇒ (x² + 5x + 28) = t².
Put the values in the equation, we get.
⇒ t² - 24 < 5t.
⇒ t² - 5t - 24 < 0.
As we know that,
Factorizes the equation into middle term splits, we get.
⇒ t² - 8t + 3t - 24 < 0.
⇒ t(t - 8) + 3(t - 8) < 0.
⇒ (t + 3)(t - 8) < 0.
Plot this point on wavy curve methods, we gt.
⇒ t + 3 = 0.
⇒ t = - 3.
⇒ t - 8 = 0.
⇒ t = 8.
⇒ t ∈ (- 3, 8).
⇒ - 3 < t < 8.
Put the values of √(x² + 5x + 28) = t in the equation, we get.
⇒ - 3 < √(x² + 5x + 28) < 8.
Squaring on both sides of the equation, we get.
⇒ (- 3)² < (x² + 5x + 28) < (8)².
⇒ 0 < (x² + 5x + 28) < 64.
Now we considered,
Two cases in this situations.
Case = 1.
⇒ x² + 5x + 28 > 0.
This equation is true for ∀ x ∈ R. - - - - - (1).
Case = 2.
⇒ x² + 5x + 28 < 64.
⇒ x² + 5x + 28 - 64 < 0.
⇒ x² + 5x - 36 < 0.
Factorizes the equation into middle term splits, we get.
⇒ x² + 9x - 4x - 36 < 0.
⇒ x(x + 9) - 4(x + 9) < 0.
⇒ (x - 4)(x + 9) < 0.
Put the points on wavy curve method, we get.
⇒ x - 4 = 0.
⇒ x = 4.
⇒ x + 9 = 0.
⇒ x = - 9.
We get,
⇒ x ∈ (- 9, 4).
⇒ - 9 < x < 4. - - - - - (2).
From equation (1) and (2), we get.
⇒ x ∈ (- 9, 4).
All points are : {- 8, - 7 , - 6, - 5, - 4, - 3, - 2, - 1, 0, 1, 2, 3}.
But we want only positive integrals,
∴ Number of positive integrals = 3.