Math, asked by hafreen12b06, 17 days ago

the number of real numbers in [0,2π] satisfying sin ^ 4 x - 2 sin^2x+ 1 is​

Answers

Answered by DeeznutzUwU
1

        \text{The given equation is }sin^4x - 2sin^2x + 1 = 0

        \text{Let }m = sin^2x

\implies \: m^2 - 2m + 1 =0

        \text{Applying splitting the middle term method}

\implies \: m^2 - m - m + 1 =0

\implies \: m(m-1)-1(m-1) = 0

\implies \: (m-1)^2 = 0

\implies \: m = 1

\implies \: sin^2x = 1

\implies \: sin^2x = sin^2\text{\huge{(}}\dfrac{\pi}{2}\text{\huge{)}}

\implies \: x = n\pi \± \dfrac{\pi}{2} \text{ where }n \: \epsilon \: I

        \text{It is also given that }x \: \epsilon \: [0,2\pi]

\implies \: \boxed{x = \dfrac{\pi}{2},\dfrac{3\pi}{2}}

Similar questions