Math, asked by aryan021212, 11 days ago

The number of real solution (s) of the equation

 \sqrt{x  + 1}  -  \sqrt{x - 1}  =  \sqrt{4x - 1}

is ______​

Answers

Answered by mathdude500
21

\large\underline{\sf{Solution-}}

Given equation is

\rm \:  \sqrt{x + 1} -  \sqrt{x - 1} =  \sqrt{4x - 1}  \\

Before we start the question, let first define the domain of the given expression.

So, the given equation is valid if

\rm \: x + 1 \geqslant 0 \\ \rm \: x - 1 \geqslant 0 \\ 4x - 1 \geqslant 0 \\

So, from above, we get

\rm \: x \geqslant  1 \:  \:  \:  \\ \rm \: x \geqslant  - 1 \\ \rm \: x \geqslant \dfrac{1}{4} \:  \:   \\

\bf\implies \:x \geqslant 1 \\

Let's solve the equation now.

Given expression is

\rm \:  \sqrt{x + 1} -  \sqrt{x - 1} =  \sqrt{4x - 1}  \\

On squaring both sides, we get

\rm \: ( \sqrt{x + 1} -  \sqrt{x - 1} )^{2} =  (\sqrt{4x - 1})^{2}   \\

\rm \:  {( \sqrt{x + 1} )}^{2}  +  {( \sqrt{x - 1} )}^{2}  - 2 \sqrt{x + 1} \sqrt{x - 1} = 4x - 1 \\

\rm \: x + 1 + x - 1 - 2 \sqrt{ {x}^{2} -  {1}^{2}  }  = 4x - 1 \\

\rm \: 2x - 2 \sqrt{ {x}^{2} -  1 }  = 4x - 1 \\

\rm \:  - 2 \sqrt{ {x}^{2} -  1 }  = 4x - 1 - 2x \\

\rm \:  - 2 \sqrt{ {x}^{2} -  1 }  = 2x - 1  \\

On squaring both sides, we get

\rm \: ( - 2 \sqrt{ {x}^{2} -  1 })^{2}   = (2x - 1) ^{2}  \\

\rm \: 4( {x}^{2} - 1) =  {(2x)}^{2} +  {1}^{2}  - 2(2x)(1) \\

\rm \:  {4x}^{2} - 4 =  {4x}^{2} + 1 - 4x \\

\rm \:   - 4 =   1 - 4x \\

\rm \:   - 4 - 1 =  - 4x \\

\rm \:  - 4x =  - 5 \\

\rm\implies \:x = \dfrac{5}{4} \\

Verification :-

Given equation is

\rm \:  \sqrt{x + 1} -  \sqrt{x - 1} =  \sqrt{4x - 1}  \\

On substituting the value of x, we get

\rm \:  \sqrt{\dfrac{5}{4}  + 1} -  \sqrt{\dfrac{5}{4}  - 1} =  \sqrt{5 - 1}  \\

\rm \:  \sqrt{\dfrac{5 + 4}{4}} -  \sqrt{\dfrac{5 - 4}{4}} =  \sqrt{4}  \\

\rm \:  \sqrt{\dfrac{9}{4}} -  \sqrt{\dfrac{1}{4}} = 2  \\

\rm \: \dfrac{3}{2}  - \dfrac{1}{2}  = 2 \\

\rm \: \dfrac{3 - 1}{2}  = 2 \\

\rm \: \dfrac{2}{2}  = 2 \\

\rm \: 1  = 2 \\

\rm \: which \: is \: not \: possible \\

Thus,

\rm\implies \:\rm \:  \sqrt{x + 1} -  \sqrt{x - 1} =  \sqrt{4x - 1} \: have \: no \: solution.\\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

If Discriminant, D > 0, then roots of the equation are real and unequal.

If Discriminant, D = 0, then roots of the equation are real and equal.

If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

Discriminant, D = b² - 4ac

Answered by InsaneAnswering
7

No valid solutions given

Answer above the attachment

Attachments:
Similar questions