Math, asked by minnu252003, 7 months ago

The number of roots of the equation √2 + e^cosh^-1 x - e^sinh^-1x =0 is​

Answers

Answered by abdullah8649
0

Answer:

dxhmqwgihdoahdkgqjgsjsogjoqg

Answered by Swarup1998
0

The number of roots of the equation \mathsf{\sqrt{2}+e^{cosh^{-1}x}-e^{sinh^{-1}x}=0} is 2.

Concept:

\mathsf{sinh^{-1}x=log_{e}(x+\sqrt{x^{2}+1})}

\mathsf{cosh^{-1}x=log_{e}(x+\sqrt{x^{2}-1})}

\mathsf{e^{log_{e}x}=x}

Step-by-step explanation:

Here, \mathsf{\sqrt{2}+e^{cosh^{-1}x}-e^{sinh^{-1}x}=0}

\mathsf{\Rightarrow \sqrt{2}+e^{log_{e}(x+\sqrt{x^{2}-1})}-e^{log_{e}(x+\sqrt{x^{2}+1})}=0}

\mathsf{\Rightarrow \sqrt{2}+(x+\sqrt{x^{2}-1})-(x+\sqrt{x^{2}+1})=0}

\mathsf{\Rightarrow \sqrt{2}+x+\sqrt{x^{2}-1}-x-\sqrt{x^{2}+1}=0}

\mathsf{\Rightarrow \sqrt{x^{2}+1}-\sqrt{x^{2}-1}=-\sqrt{2}}

Squaring both sides, we get

\mathsf{x^{2}+1+x^{2}-1-2\sqrt{x^{2}+1}\sqrt{x^{2}-1}=2}

\mathsf{\Rightarrow 2x^{2}-2\sqrt{x^{4}-1}=2}

\mathsf{\Rightarrow x^{2}-1=\sqrt{x^{4}-1}}

Again squaring both sides, we get

\mathsf{x^{4}-2x^{2}+1=x^{4}-1}

\mathsf{\Rightarrow 2x^{2}-2=0}

\mathsf{\Rightarrow x^{2}-1=0}

Since the highest power of \mathsf{x} is 2, the given equation has two roots.

#SPJ3

Similar questions
Math, 7 months ago