Math, asked by fathimajogee1820, 1 year ago

The number of solutions in [0,2π] of the equation cot 2x/cot x + cot x/cot 2x + 2 = 0 is

Answers

Answered by amitnrw
9

Given :   cot 2x/cot x + cot x/cot 2x + 2 = 0   x ∈  [0,2π]  

To find :  Number of Solutions

Solution:

Cot2x/Cotx  + Cotx/Cot2x  + 2  =  0  

=> Cos2x.Sinx/Sin2xCosx  +  Cosx.Sin2x/Sinx. Cos2x  +  2 = 0

=> Cos2x.Sinx/2SinxCosxCosx  + cosx2SinxCosx/SinxCos2x  + 2 = 0

=> Cos2x/2Cos²x   + 2Cos²x/Cos2x  + 2 = 0

=> (2Cos²x - 1)/2Cos²x   + (1 + Cos2x )/Co2x  + 2 = 0

=> 1  -  1/2Cos²x   + 1/Cos2x   + 1 +  2 = 0

=> 1/Cos2x    -  1/2Cos²x  = - 4

=> 1/(2Cos²x - 1)  -  1/2Cos²x  = - 4

=> 2Cos²x  - 2Cos²x +  1  = -8 (2Cos²x - 1) Cos²x

=>  1 =   -16Cos⁴x  + 8Cos²x

=> 16Cos⁴x  - 8Cos²x  + 1 = 0

=> (4Cos²x   - 1)² = 0

=> 4Cos²x   - 1  = 0

=>  4Cos²x =  1  

=> Cos²x  = 1/4

=> Cosx  = ± 1/2

x =  nπ ± π/3

π/3  , 2 π/3  , 3 π/3 , 5 π/3

4 Solutions

another way

cot 2x/cot x + cot x/cot 2x + 2 = 0 is

Let say cot 2x/cot x = a

=> a + 1/a + 2 = 0

=> a² + 2a + 1 =  0

=> (a + 1)² = 0

=> a = - 1

cot 2x/cot x  = - 1

=> Cot2x  = -Cotx

=> 1/tan2x = -1/tanx

=> tan2x = - Tanx

=> 2Tanx/(1 - Tan²x) = - Tanx

=> 2 = Tan²x - 1

=> Tan²x = 3

=> Tanx = ±√3

x =  nπ ± π/3

π/3  , 2 π/3  , 3 π/3 , 5 π/3

4 Solutions

Learn More:

1 (2x-1/2x+1)=tan^-1 (23/36)

https://brainly.in/question/8925658

tan x + sec x = √3 find the value of x - Brainly.in

https://brainly.in/question/4638354

Similar questions