Math, asked by Jjahnavigowda, 5 months ago

The number of terms in the series 101+ 99+ 97+...+47 is

Answers

Answered by rathoreniharika222
0

Answer:

common difference, d = 99 - 101= -2

Last term =47

Let the number of terms be n

Then,

47=101+(n-1) *(-2)

=101-2n+2

=103-2n

or, 2n=103-47

or, n = 56/2=28

No. of terms = 28.

Answered by Salmonpanna2022
2

Step-by-step explanation:

 \bf \underline{Solution-} \\

\textsf{In this case, we have to find the number of terms.}\\

\textsf{Here, a = 101, l = Tn = 47, d = 99 -101 = -2} \\

 \mathsf{  \therefore \: 47 = 101(n - 1) \times ( - 2),where \: n  = number \: of \: terms} \\

\mathsf {\implies \: 47 = 101 - 2n + 1} \\

\mathsf {\implies \: 2n = 103 - 47} \\

\mathsf {\implies \: 2n = 56} \\

\mathsf {\implies \: n =  \frac{56}{2} } \\

\mathsf {\implies \: n = 28} \\

\mathsf {\therefore \: S_n =  \frac{n}{2}(a + l) } \\

 \mathsf{S_{28}  =  \frac{28}{2} (101 + 47)} \\ = 14 \times 18 \\ =   \bf2072 \\

Similar questions