Math, asked by Anonymous, 1 month ago

The number of x satisfying | x - 2 |^{10x^2 - 1} = |x - 2|^{3x} is

⭕ 5
⭕ 6
⭕ 2
⭕ 4​

Answers

Answered by mathdude500
17

\large\underline{\sf{Solution-}}

Given equation is

{\bf :\longmapsto\: { |x - 2| }^{ {10x}^{2}  - 1} = { |x - 2| }^{3x}}

Using hit and trial method,

If we take x = 2, we get

 \red{\rm :\longmapsto\: { |2 - 2| }^{ {10x}^{2}  - 1} = { |2 - 2| }^{3x}}

 \red{\rm :\longmapsto\: {0 }^{ {10(2)}^{2}  - 1} = { 0 }^{3 \times 2}}

 \red{\rm :\longmapsto\: 0 = 0}

 \red{\bf\implies \:x = 2 \: is \: its \: solution}

Consider again,

 \purple{\bf :\longmapsto\: { |x - 2| }^{ {10x}^{2}  - 1} = { |x - 2| }^{3x}}

Again, If we take x = 3, we get

 \purple{\bf :\longmapsto\: { |3 - 2| }^{ {10(3)}^{2}  - 1} = { |3 - 2| }^{3 \times 3}}

 \purple{\bf :\longmapsto\: { |1| }^{ 90 - 1} = { |1| }^{9}}

 \purple{\bf :\longmapsto\: { |1| }^{ 89} = { |1| }^{9}}

 \purple{\bf :\longmapsto\: 1 = 1}

 \purple{\bf\implies \:x = 3 \: is \: its \: solution}

Again, Consider

 \green{\bf :\longmapsto\: { |x - 2| }^{ {10x}^{2}  - 1} = { |x - 2| }^{3x}}

If we take x = 1, we get

 \green{\bf :\longmapsto\: { |1 - 2| }^{ {10(1)}^{2}  - 1} = { |1 - 2| }^{3 \times 1}}

 \green{\bf :\longmapsto\: { | - 1| }^{ 10  - 1} = { | - 1| }^{3}}

 \green{\bf :\longmapsto\: { | 1| }^{9} = { | 1| }^{3}}

 \green{\bf :\longmapsto\:1 = 1 }

 \green{\bf\implies \:x = 1 \: is \: its \: solution}

Again Consider

{\bf :\longmapsto\: { |x - 2| }^{ {10x}^{2}  - 1} = { |x - 2| }^{3x}}

\rm \implies\: {10x}^{2} - 1 = 3x

\rm \implies\: {10x}^{2}  - 3x - 1 = 0

\rm \implies\: {10x}^{2}  - 5x  + 2x- 1 = 0

\rm :\longmapsto\:5x(2x - 1) + 1(2x - 1) = 0

\rm :\longmapsto\:(2x - 1)(5x + 1) = 0

\bf\implies \:x = \dfrac{1}{2}  \:  \: or \:  \:  -  \: \dfrac{1}{5}

Hence, Solution is

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:\begin{cases} &\sf{x = 2}  \\ \\ &\sf{x = 3}\\  \\ &\sf{x = 1}\\  \\ &\sf{x =  - \dfrac{1}{5} }\\ \\  &\sf{x = \dfrac{1}{2} } \end{cases}\end{gathered}\end{gathered}

So, it implies number of solution of this equation is 5.

So, option (1) is correct.


amansharma264: excellent
Similar questions