Math, asked by Anonymous, 8 months ago

The number of θ values of which satisfy the equation 6sin3θ + 25sin2θ − 39sinθ − 70 = 0 is

Answers

Answered by Agastya0606
1

Given: The equation 6sin³θ + 25sin²θ − 39sinθ − 70 = 0

To find: The number of θ values.

Solution:

  • Now we have provided with the equation:

                     6sin³θ + 25sin²θ − 39sinθ − 70 = 0

  • The roots of the equations can be:

                     ( sinθ − 2) x ( sinθ + 5 ) x ( 6sinθ + 7 ) = 0

  • From this, we get:

                     sinθ = 2, -5 and 6/7

  • But we know the range of sinθ is from -1 to 1. So:

                     sinθ ≠ 2, -5

  • Then sinθ = 6/7
  • So, θ = 2nπ - arc sin 7/6

Answer:

             So the value of θ will be 2nπ - arc sin 7/6

Similar questions