The Number of values of x satisfying [ln(1+x)]=ln(1+x)+[(1+x)^2]-3 (Where [.] represents greatest integer function)
Don't Spam
Answers
Answered by
1
Step-by-step explanation:
0<cot
−1
x<π and −π/2<tan
−1
x<π
⇒ [cot
−1
x]∈{0,1,2,3} and [tan
−1
x]∈{−2,−1,0,1}
For [tan
−1
x]+[cot
−1
x]=2, following cases are possible
Case (i): [cot
−1
x]=[tan
−1
x]=1
⇒ 1≤cot
−1
x<2 and 1≤tan
−1
x<π/2
⇒ x∈(cot2,cot1] and x∈[tan1,∞)
∴ x∈ϕ as cot1<tan1
Case (ii): [cot
−1
x]=2, [tan
−1
x]=0
⇒ 2≤cot
−1
x<3 and 0≤tan
−1
x<1
⇒ x∈(cot3,cot2] and x∈[0,tan1)
∴ x∈ϕ as cot2<0
So no solution.
Case (iii): [cot
−1
x]=3, [tan
−1
x]=−1
⇒ 3≤cot
−1
x<π and −1≤tan
−1
x<0
⇒ x∈(−∞,cot3] and x∈[−tan1,0)
∴ x∈ϕ as cot3<−tan1
Therefore, no such values of x exist.
Similar questions