Math, asked by sngtsehgal, 2 months ago

The number of zeroes of polynomial f(x) = (x - 1)(x-2)(x-3) are (a) 1 (c) 3 (6) 2 (d) 4
.​

Answers

Answered by shellysandhu20
0
X-1 =0
X=1

X-2=0
X=2

X-3=0
X=3
Answered by Anonymous
74

Question:

The number of zeroes of polynomial f(x) = (x - 1)(x-2)(x-3) are

(a) 1

(b) 3

(c) 2

(d) 4

\\

Given:

f(x) = (x - 1) (x - 2) (x - 3)

\\

Solution:

First Multiplying (x - 1) with (x - 2)

 \tt \large \:⇒ (x - 1) \times (x - 2)

 \tt \small \:⇒ {x}^{2}   +  (x \times  - 2)  +( - 1 \times x) +   ( - 1\times  - 2)

 \tt \large \:⇒ {x}^{2}    - 2x   - 1x + 2

 \tt \large \:⇒ {x}^{2}    - 3x+ 2

Now, multiplying

 \tt  ({x}^{2}    - 3x+ 2) \: with \: (x - 3)

 \tt \large \:⇒ ({x}^{2}    - 3x+ 2) \times (x - 3)

 \tt \footnotesize \:⇒ {x}^{3}   +  ({x}^{2}\times  - 3)  +( - 3x \times x) +   ( - 3x\times  - 3) + (2 \times x) + ( - 3 \times 2)

 \tt \large \:⇒ {x}^{3}    -   3{x}^{2}   - 3 {x}^{2}  +  9 {x}^{2}  + 2  x  - 6

 \tt \large \:⇒ {x}^{3}      +  3{x}^{2}    + 2  x  - 6

Here as we can see the highest power of x is 3. So, we can conclude that the number of zeroes of polynomial f(x) = (x - 1)(x-2)(x-3) will also 3.

Henceforth,

Option (b) is the right option.

\tt\color{aqua}{\:\:\:\:\:\:\:\:\:\:\:\:●\mid} \underbrace{\color{teal}{Thànk\:Ü}}\color{aqua}{\mid●}\\

Similar questions