Math, asked by kottevidyasri, 9 months ago

the number of zeros of the polynomial 2x+3x^2-4x^4=​

Answers

Answered by lakshya200627
0

Answer:

=)

3x {}^{2} + 4x - 43x

2

+4x−4

= > 3x {}^{2} + 6x - 2x - 4=>3x

2

+6x−2x−4

= > 3x(x + 2) - 2(x + 2)=>3x(x+2)−2(x+2)

= > (3x - 2)(x + 2)=>(3x−2)(x+2)

= > x = \frac{2}{3} or \: x = - 2=>x=

3

2

orx=−2

Verification:--

= > \alpha + \beta = \frac{ - b}{a}=>α+β=

a

−b

= > \frac{2}{3} - 2 = \frac{ - 4}{3}=>

3

2

−2=

3

−4

= > \frac{2 - 6}{3} = \frac{ - 4}{3}=>

3

2−6

=

3

−4

= > \frac{ - 4}{3} = \frac{ - 4}{3}=>

3

−4

=

3

−4

Now,

\alpha . \beta = \frac{c}{a}α.β=

a

c

= > \frac{2}{3} .( - 2) = \frac{ - 4}{3}=>

3

2

.(−2)=

3

−4

= > \frac{ - 4}{3} = \frac{ - 4}{3}=>

3

−4

=

3

−4

Similar questions