the number of zeros of the polynomial 2x+3x^2-4x^4=
Answers
Answered by
0
Answer:
=)
3x {}^{2} + 4x - 43x
2
+4x−4
= > 3x {}^{2} + 6x - 2x - 4=>3x
2
+6x−2x−4
= > 3x(x + 2) - 2(x + 2)=>3x(x+2)−2(x+2)
= > (3x - 2)(x + 2)=>(3x−2)(x+2)
= > x = \frac{2}{3} or \: x = - 2=>x=
3
2
orx=−2
Verification:--
= > \alpha + \beta = \frac{ - b}{a}=>α+β=
a
−b
= > \frac{2}{3} - 2 = \frac{ - 4}{3}=>
3
2
−2=
3
−4
= > \frac{2 - 6}{3} = \frac{ - 4}{3}=>
3
2−6
=
3
−4
= > \frac{ - 4}{3} = \frac{ - 4}{3}=>
3
−4
=
3
−4
Now,
\alpha . \beta = \frac{c}{a}α.β=
a
c
= > \frac{2}{3} .( - 2) = \frac{ - 4}{3}=>
3
2
.(−2)=
3
−4
= > \frac{ - 4}{3} = \frac{ - 4}{3}=>
3
−4
=
3
−4
Similar questions