Math, asked by mannnagda, 1 year ago

The number or solutions of the equation 16^sin^2x + 16^cos^2x= 10 is​

Answers

Answered by spiderman2019
1

Answer:

number of possible solutions = 8.

π/6, 5π/6 , 7π/6, 11π/6, π/3, 2π/3, 4π/3, 5π/3.

Step-by-step explanation:

16^sin^2x + 16^cos^2x= 10    (∵Cos²x = 1 - Sin²x)

=> 16^sin^2x + 16^1 - sin^2x  = 10

16^sin^2x + 16/16^sin^2x  = 10.

Let 16^sin^2x = p

p + 16 / p = 10

p² - 10p + 16 = 0

p² - 8p -2p + 16 = 0

p(p - 8) - 2(p - 8) = 0

(p - 2 ) (p - 8) = 0

p = 2 or 8

Now substitute back the value of p.

16^sin^2x = 2                         |         16^sin^2x = 8            

2^4sin^2x = 2¹.                       |         2^4sin^2x = 2³

4sin^2x = 1                              |         4sin^2x = 3

sin^2x = 1/4                             |          sin^2x  = 3/4

sinx = ±1/2                               |          sinx = ±√3/2

For sinx = ±1/2

x = π/6, π - π/6, π + π/6, 2π - π/6

  = π/6, 5π/6 , 7π/6, 11π/6  

For sinx = ±√3/2

x =  π/3, π - π/3, π + π/3, 2π - π/3

     = π/3, 2π/3, 4π/3, 5π/3

Thus all possible values are π/6, 5π/6 , 7π/6, 11π/6, π/3, 2π/3, 4π/3, 5π/3.

Similar questions