Math, asked by sharan2268, 1 year ago

- The number that satisfies the
statement "The sum of a number
and twice its square is 105", is​

Answers

Answered by Anonymous
32

QUADRATIC EQUATIONS :

Given statement : " The sum of a number and twice its square is 105."

Let the number be x.

Now, twice of this number's square =  \mathsf{2{x}^{2}\:=\:105}

Now, as per the question's statement :

Equation formed : \boxed{\mathsf{x\:+\:2{x}^{2}\:=\:105}}

 \mathsf{2{x}^{2}\:+\:x \:=\:105}

 \mathsf{2{x}^{2}\:+\:x\:-105\:=\:0}

By using splitting the middle term method,

 \mathsf{2{x}^{2}\:+\:15x\:-14x\:-105\:=\:0}

\mathsf{x(\:2x\:+\:15\:) \:-7(\:2x\:+\:15\:)\:=\:0}

 \mathsf{(\:x\:-\:7\:)(\:2x\:+\:15\:)\:=\:0}

 \mathsf{(\:x\:-\:7\:)\:=\:0,(\:2x\:+\:15\:)\:=\:0}

 \boxed{\mathsf{x\:=\:7,\:{\dfrac{-15}{2}}}}

VERIFICATION :

For x = 7,

Putting value of 'x' in equation,

 \mathsf{L. H. S. \:=\:2{7}^{2}\:+\:7 }

 \mathsf{L. H. S. \:=\:2{\times{49}\:+\:7 }}

 \mathsf{L. H. S. \:=\:105}

L.H.S. = R. H. S.

For  \mathsf{x\:=\:{\dfrac{-15}{2}}},

Putting this value of 'x' in equation,

 \mathsf{L. H. S. \:=\:2({\dfrac{-15^2}{2^2})\:-\:{\dfrac{15}{2}}}}

 \mathsf{L. H. S. \:=\:{\dfrac{225}{2}\:-\:{\dfrac{15}{2}}}}

 \mathsf{L. H. S. \:=\:{\dfrac{210}{2}}}

 \mathsf{L. H. S. \:=\:105}

L. H. S. = R. H. S.

Hence, Both values of 'x' are correct.

Answered by MonsieurBrainly
11

Let the unknown number be denoted by the variable x.

Forming an equation from the given word equation:

x + 2x² = 105.

The equation formed above can be rearranged as 2x² + x - 105 = 0, and is a quadratic equation of the form ax² + bx + c, where a = 2, b = 1 and c = -105.

Using the quadratic formula to find the solutions of the equation:

x = \frac{ - b \pm \sqrt{ {b}^{2} - 4ac} }{2a} \\ \\ x = \frac{ - 1 \pm \sqrt{1 - 4(2)( - 105)} }{2(2)} \\ \\ x = \frac{ - 1 \pm \sqrt{1 + 840} }{4} \\ \\ x = \frac{ - 1 \pm \sqrt{841} }{4} \\ \\ x = \frac{ - 1 \pm29}{4} \\ \\ x =  \frac{ - 1 - 29}{4} \\ \\ = \frac{ - 30}{4} \\ \\ = - 7.5 \: \: (or) \\ \\ x = \frac{ - 1 + 29}{4} = \frac{28}{4} = 7

Therefore, the number can be -7.5 or 7.

Similar questions