Math, asked by ssramarao731, 2 months ago

the numbers 4,6,8 have a frequencies X+2,X,x-1 if their arthemetic mean is 8 then the value of x​

Answers

Answered by mathdude500
4

\green{\large\underline{\sf{Solution-}}}

\begin{gathered}\boxed{\begin{array}{c|c|c} \bf x & \bf f& \bf fx \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{}& \frac{\qquad \qquad}{} \\ \sf 4 & \sf x  +  2& \sf 4x  +  8 \\ \\ \sf 6 & \sf x& \sf 6x \\ \\ \sf 8 & \sf x   -   1& \sf 8x   -   8 \end{array}} \\ \end{gathered}

 \blue{\bf :\longmapsto\: \sum \: f = 3x + 1}

 \blue{\bf :\longmapsto\: \sum \: fx = 18x }

 \blue{\bf :\longmapsto\: Mean \:  = 8}

We know,

\dashrightarrow\bf Mean = \dfrac{ \sum f x}{ \sum f}

\rm :\longmapsto\:8 = \dfrac{18x}{3x + 1}

\rm :\longmapsto\:24x + 8 = 18x

\rm :\longmapsto\:6x =  - 8

\rm :\longmapsto\:which \: is \: not \: possible.

\bf\implies \:There \: is \: no \: possible \: value \: of \: x

Additional Information :-

\dashrightarrow\sf Mean =A +  \dfrac{ \sum f_i d_i}{ \sum f_i}

\dashrightarrow\sf Mean =A +  \dfrac{ \sum f_i u_i}{ \sum f_i} \times h

\dashrightarrow\sf Median= l + \Bigg \{h \times \dfrac{ \bigg( \dfrac{N}{2} - cf \bigg)}{f} \Bigg \}

Similar questions