Math, asked by hagenafida, 9 months ago

The numbers a1, a2, a3, . . . form an arithmetic sequence with a1 not equal a2. The three numbers a1, a2, a6 form a geometric sequence in that order. Determine all possible positive integers k for which the three numbers a1, a4, ak also form a geometric sequence in that order.

Answers

Answered by amitnrw
2

Given : a₁ , a₂ , a₃   ____ form an  an arithmetic sequence

a₁ ≠  a₂

a₁ , a₂ , a₆  form geometric sequence

To Find : all possible positive integers k for which the three numbers a₁, a₄, ak    form a geometric sequence

Solution:

a₁ , a₂ , a₃  ,  _____ aₙ    is  AP

a₁ ≠  a₂  => common difference is not zero

aₙ = a + (n - 1) d

a₁ , a₂ , a₆  form GP

a₂²   = a₁ a₆

=> (a₁ + d)²  = a₁ (a₁ + 5d)

=> a₁²  + d² + 2a₁d  = a₁² + a₁5d

=> d² + 2a₁d  =  a₁5d

as d ≠ 0

=> d  + 2a₁  = 5a₁

=> 3a₁  = d

=> d = 3a₁

a₄  = a₁  + 3(3a₁)  = 10a₁

ak  = a₁ + (k - 1)(3a₁)  = a + 3ka₁  - 3a₁  = a₁ (3k - 2)

a₁, a₄, ak    form a geometric sequence

=> a₄²  =  a₁ . (ak)

=> (10a₁)²  = a₁ a₁(3k - 2)

=>  3k - 2 = 100

=> 3k = 102

=>  k = 34

Value of k is  34

Learn More:

if a,b,c are in AP then a/bc, 1/c, 2/b are in​ - Brainly.in

brainly.in/question/12086233

In any ΔABC, if a². b², c² are are in A.P.. then prove that cot A, cot B ...

brainly.in/question/6326314

Similar questions