Math, asked by helpme5744, 1 month ago

The numerator and the denominator of a fraction are in the ratio of 3 : 2. If 3 is added to the numerator and 2 is subtracted from the denominator, a new fraction is formed whose value is
 \frac{9}{4}
(9÷4). Find the original fraction.

Answers

Answered by SparklingBoy
193

\large \bf \clubs \:  Given  :-

  • The numerator and the denominator of a fraction are in the ratio of 3 : 2.

  • If 3 is added to the Numerator and 2 is subtracted from the Denominator, it becomes  \dfrac{9}{4}

-----------------------

\large \bf \clubs \:  To \: Find :-

  • The Original Fraction.

-----------------------

\large \bf \clubs \:  Solution :-

Let Numerator and Denominator of Original Fraction be :

  • Numerator = 3x

  • Denominator = 2x

So ,

\sf Original \: Fraction \: is : {\dfrac{\text{ 3x}}{ \text{ 2x}} }

When 3 is added to the Numerator and 2 is subtracted from the Denominator :

\sf Fraction \: Becomes : { \dfrac{\text{3x+3}}{\text{2x - 2}} }

According To Question :

 \dfrac{\text{3x+3}}{\text{2x - 2}}  =  \frac{9}{4}  \\

On Cross Multiplying :

 4(\text 3x + 3) = 9(\text 2x - 2) \\

12\text x + 12 = 18\text x - 18 \\

18\text x - 12\text x  = 18+12 \\

6\text x  = 30 \\

\purple{ \Large :\longmapsto  \underline {\boxed{{\bf x = 5} }}}

Hence ,

\large\underline{\pink{\underline{\pmb{\frak{Original\:\:Fraction=\dfrac{15}{10}}}}}}


MasterDhruva: Nice!
Answered by Anonymous
198

Answer:

Given :-

  • The numerator and the denominator of a fraction are in the ratio of 3 : 2.
  • If 3 is added to the numerator and 2 is subtracted from the denominator, a new fraction is formed whose value is 9/4.

To Find :-

  • What is the original fraction.

Solution :-

Let,

\mapsto \bf{Numerator =\: 3x}

\mapsto \bf{Denominator =\: 2x}

Hence, the original fraction will be :

\leadsto \sf Original\:  Fraction\dfrac{Numerator}{Denominator}

\leadsto \sf\bold{\green{Original\:  Fraction\dfrac{3x}{2x}}}

According to the question,

\implies \bf \dfrac{Numerator + 3}{Denominator - 2} =\: New\: Fraction

\implies \sf \dfrac{3x + 3}{2x - 2} =\: \dfrac{9}{4}

By doing cross multiplication we get,

\implies \sf 9(2x - 2) =\: 4(3x + 3)

\implies \sf 18x - 18 =\: 12x + 12

\implies \sf 18x - 12x =\: 12 + 18

\implies \sf 6x =\: 30

\implies \sf x =\: \dfrac{\cancel{30}}{\cancel{6}}

\implies \sf x =\: \dfrac{5}{1}

\implies \sf\bold{\purple{x =\: 5}}

Hence, the required original fraction is :

\longrightarrow \sf Original\: Fraction =\: \dfrac{3x}{2x}

\longrightarrow \sf Original\: Fraction =\: \dfrac{3 \times 5}{2 \times 5}

\longrightarrow \sf Original\: Fraction =\: \dfrac{\cancel{15}}{\cancel{10}}

\longrightarrow \sf\bold{\red{Original\: Fraction =\: \dfrac{3}{2}}}

{\small{\bold{\underline{\therefore\: The\: original\: fraction\: is\: \dfrac{3}{2}\: .}}}}


MasterDhruva: Great!
Similar questions